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HYDRAULICS

CHARACTERISTIC FEATURES OF A LIQUID FLOW IN AN OPEN
GHANNEL

By V. V. VEDERNIKOV

(Communicated by L. S. Leibenson, Member of the Aéademy, 27. XII. 1945)

1. Saint-Venant classified streams in open channels into two groups':
rivers or «tranquil» flows, and torrents or «apid» flows, connecting this clas-
sification (') with the propagation of disturbances over the free surface of the

liquid in the open channel. In tranquil flows (U, < ]/é_H—n) the disturbances

may propagate downstream as well as up. In rapid flows (U, > ]/gH(_,) distur-
bances do not propagate upstream. To determine the kind of flow, Saint-
Venant proposed the following number*(1): :

2

U R
ACUAIE-DY (1)

When this number equals unity, the corresponding values of U, and H,
(and of the slope of the bottom i,) are called critical. The value of this num-
ber in open channel hydraulics is well known.

2. Observations on.structures and theoretical investigations show that
Saint-Venant’s criterion and his classification of flows into tranquil and rapid
ones is not sufficient; a supplementary classification is needed, as well as a
criterion to characterize a disturbance-as progressing along the stream with
reference to its variation in form and to its action on the stream, Z. e., the
bossibility of steady motion in the stream. Boussinesq(?) has pointed out.
that, taking account of the curvature of filaments (which thus far has been
possible only in the plane problem, i.e., in a broad reéctangular channel), one
will find that the friction and the slope combine to decrease the velocity
of propagation of individual parts of the wave disturbance, as long as
(with € = const) U? < 4gH,. o o

In-the following we shall make use of Saint-Venant’s equations for
gradually varying unsteady flow in prismatic channels and also -of equa-
tions which we have published previously (®), employing the same nota-
tions. ' :

Analysis of the change in form of a disturbance, when moving along
a stream, gives grounds for introducing the number** A
Mgt 4B Ulb(34H) 2)
: p*8F[By p (Wo—Uo)- ‘ ' A
as a criterion of the possibility of steady uniform flow (or of its stabi

* This form was given later. Number (1) is more commonly known as Froude's num-

ber. X Vs
** Number (2) in its second form is independent of the method by which the influence

: R ; s abpibuti i front propaga-
of non-uniformity in the velocity distribution on the velqclty of the wave front p )
gaﬁ?m is evah:a{eld. Tﬁe subscri};ﬂ; 0 denotes the hydraulic elements of uniform motion.
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lity). If this number is less than unity, the flow is tranquil or rapid;
if it is greater than unity, the flow is said to be «ultra-rapid» («wavy
flow»). Thé values of U,, H, and the slope of the bottom i, are descri-

bed as «seconds critical (e. g. UZ) when number (2) is equal to unity.
. Determining the variation in the velocity © of propagabion of the

level (depth or area) ‘along the free surface of the wave disturbing the
uniform flow (dF|di=0), we get at its front

dw 1dr_ oW Ty p___Mo(1-H3')U0 W | E,
o= kGt % _———_.Z(WO—UO)]_‘W'I—r @)

where p is the exponent in the law of resistance™; OW[OF =
=%LV-QF;—%N is the change in the velocity W (of propagation of the
0

level) along the same surface in the case of a perfect fluid. From (3)
with a small height & we have o =W J-Es, where s is measured down-
gtream - from the front of the disturbances. For laminary flow in a broad
rectangular channel, p=1, B=1, M =1, and the formula for number (2)
‘becomes :

4U% | gH, ‘ (4)

It follows from Saint-Venant’s equations, and has been demonstrated
by Saint-Venant himself, that the - waves of a perfect fluid (i,=0;
U* | C*R = 0) propagate without any changes in height (there being no los-
ses of energy) and are subject only to shear in the direction parallel
to the initial free surface. Therefore the rélation do/9F = oW /[OF deter-
mines the damping of the disturbance and, consequently, the stability
of the initial motion. For example, if o [OF < W |F for a descending
positive wave (r<C0) of a real fluid, then, observing a certain level
J above the original surface; it will be seen that during a length of time

2 . . .

dt a volume (8W/9F —d0[oF)™ Bdt is displaced from the part of the
wave above this level into the part below, Referring this volume to the
original volume of a small wave at the front in the shape of an ele-
mentary  prism of height a, we get an estimate of the velocity of dam-
ping of the disturbance (in the form of a positive or negative wave) ab
the beginning of the wave propagation dh|dt =r(0W |0F — dw[0F) h=
= —FE.h (and the velocity of lengthening of its base, whose initial
length was [, as deduced from the condition for the invariability of the
volume of the disturbance dl/dt=E|, . e. the velocity of propagation
of the rear part of the wave at the original surface level .® = W,—E\l).

Similarly, for a small rate of flow g of the wave, we have dg/dt=

= — K. . ‘

The quantity 2%" 14;171(;; 0 b, determines the change (its first term) of the
resisting force per unit weight of the fluid at a small wave height A, as
compared to this force for the initial uniform motion, : o

It the flow is tranquil or rapid, positive or negative waves, when
moving along the stream, decrease in height, dampen, and the original
steady flow is restored. Negative waves always flatten. Positive waves
may become steeper and break down only if the wave forms quickly, bub
even in this case, when, for instance, for the descending wave dw|oF >0,
the inequality dw/0F < oW [OF remains true. S

* If pis aésumed to be always 2, then ¢ will, in general, be also a function of

Reynolds number. Whatever the formula used to determine C, we have §= ?CE %{ .
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. When number (2) equals unity (and E,=0), we have a critical case —
positive and negative waves retain their heights and rates of flow; nega-
tive waves flatten, while positive waves grow steeper and bhreak down.

When number (2) is greater than unity, the flow is ultra-rapid. Posi-
tive waves grow steeper and break down. Negative waves, if formed rapid-
ly, flatten, but if formed slowly, become steeper and in hoth cases
finally tend to move along without changing their shape (00 /0F — 0).
Disturbances (positive and negative waves) in an ultra-rapid stream grow
as they move along the stream (the body of the wave moving along more:
quickly than do wave bodies in a perfect fluid). Therefore, steady uni-
form flow is impossible (with constant depth and velocity of flow in a
given section) in an ultra-rapid flow, and the motion of 'such a flow
18" always wavy. ‘

3. It should be mentioned that number (2) can be used to characterize
the progress along a stream of «disturbances» and the stability of the
stesdy flow only if the motion is known beforehand to be «uniformy.
Therefore, in order to generalize the above to steady non-uniform moti n
(dF|dt 0, dQ/dt=0) we find the variation of the velocity o' with
which the heights A or areas f of the disturbance move along its free

- surface, parallel to the latter (and not to the bottom, as was the case
in equation (3)). Denoting r’=r—dF|ds, and applying equation (416) from
a previous paper (*), we find

o’ Ldr' 38 W—U, , 1 1 dF
T ma =TT Nty {E—!Tﬁa'ls— [(12U“3W)+
o F dB oW | ¥V
—[—(5W—4U)Fdf—p]}=7,7+;7 (5)
i M (1+BU .. N )
where E—.:g’_Ur_ [,Ié’_-._.? —((T/—V_L—%T]’ i, is the friction slope; and &W/df

is the variation of the velocity W of a perfect fluid. WhenV <0, the shape
change characteristic is the same as for an ultra-rapid flow, an@ when
¥V >0, it is the same as for tranquil and rapid flows. But equatlor}_(B)
can be used to analyse the propagation of disturbances only in the region
where the initial non-uniform motion varies very gradually (so gradually,
indeed, that within a sufficiently long wave-length the curvature of the
initial free surface can be neglected), . e. in regions where the deviation
from steady flow is small. Therefore we shall use equation (5) to solve
the problem of non-uniform motion, in the form of a falling surface
curve (dF[/ds<0)* in a chute, or, generally, in a steep slope with

i, > e (number (2) greater than unity), sinee it is known beforehand that
thiskind of water motion asymptotically approaches the motion in the shape
of an ultra-rapid flow. ) .

In the region where the movement is nearly «uniform» flow, the curvature
of the free surface is small, and we have dh/dt=-—Vh for the height of a small
disturbance over its short path. Thus, the criterion in this case is

MAFOT L U L Aoy sw—4U) L Blz=1 (8
p (W0 T g, F @ 12U 3W) + (W —4U) 5 dF]<

As' long as this number is less than unity, the flow is rapid. Below the
critical section, in which this number is equal to unity, the number becomes
higher than unity, the flow is ultra-rapid, steady flow becomes impossible,
waves begin to grow and in a certain section, lying below the «second» critical

* Other cases of non-uniform movement are to be considered in a later part of this
investigation. -
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section, the flow becomeés pronouncedly wavy. Thus, the possibility of the
flow passing into the ultra-rapid state in a given structure is determined by
the length of the falling surface as well. '

If the length L of the structure is less than the critical length determined
in this manner L¢, the movement in such a structure is steady and can be
computed by the usual formulae for non-uniform flow.

For the back-water curve on a slope of the same kind, when H<H (I;’

steady flow is, generally, unstable, at least in those sections where the devia~
tions from uniform movement are small; the stream is ultra-rapid, and the-
refore in these sections the equations of non-uniform steady flow can no longer
be applied. The back-water curve is a diffusor. )

4. "The above determines the limits* of applicability of the equations of
open channel hydraulics and is of considerable practical importance, e. g.
in the computation of chutes, jet vibrations in dam spillways, shaft spillways,
etc. If necessary, numbers (2) and (6)can be used in calculations intended to pre-
vent ultra-rapid flow by the construction of walls along the flow, which will
separate it into jets thereby changing the values of U and M.

Analysis of the experiments of Hopf (*), Zhavoronkov (*) and other authors
on laminar motion in thin layers shows that a laminar flow can become ultra-
rapid (or wavy flow); in first approximation the state of the flow in this case
can be estimated by number (4) [and number (6)]. This indicates that passing
to the ultrarapid flow is not determined by turbulent pulsation.

5. The accuracy of the above statements corresponds to that of Saint-
Venant and Belanger’s equations. For further refinement it is necessary to take
into account the curvature of the wave surfaces, and, in the case of laminar
flow at least, the action of surface tension, as well as the velocity distribution
over the section and the shearing stresses along the wetted perimeter (espe-
cially in channels with gently sloping sides).
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* It is interesting to note that Ralph Powell, in analysing his experiments on. the
resistance to flow in open smooth channels, which were published riot long ago (%), writes
that «it is surprising» that the law of resistance should change so abruptly and «it isalso
surprising that the change...» came between Fr=1.69 and Fr=2.49instead of at Fr=1.
This «surprising» change in the law of resistance can easily be explained on the basis
of the present paper, and is a good experimental confirmation of our theses. It is clear
that this change should be connected with number (2), i. e. with the transition from rapid -
to ultra-rapid flow, rather than with Fr=1 (i.e., with the transition from tranquil to rapid-
flow).

Indeed, number (2) for the experiment in which Fr=U,V/gH;=1.69, equals (0.96)%
and for the experiment in which Fr=2.49 it equals(1.26)2 (our analysis of Powell’s expe-
riments for channels with smooth walls showed that the values of C observed for them fit
in well with Iea’s formula, up to the change in the law of resistance; p=1.75 and f=
=0.25). Moreover, with T'r>»2.49 Powell noted that waves begin fo appear, which should
be characteristic of the «ultra-rapid» stream mentioned above. Powell did not carry out
any experiments between Fr=1.69 and Fr=2.49. ’
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