CIV E 444 - APPLIED HYDRAULICS
SPRING 2016
HOMEWORK No. 9 SOLUTION


  1. Use orifice equation:   Q = K Ao (2g Δh)1/2

    Assume d, find K from Fig. 5-21, and calculate Q. Repeat for another d.

    First trial: d = 0.60 m

    d / D = 0.60 / 1.2 = 0.5

    Δh = Δp/γ = (50000 N/m2)/(9810 N/m3)

    (2 g Δh)1/2 = (2 × 9.81 × 50000/9810) 1/2 = 10

    For T= 15oC:   ν = 1.14 × 10-6 m2/s

    (2 g Δh)1/2 d/ν = 10 × 0.60 / (1.14 × 10-6) = 5.26 × 106

    From Fig. 5-21:   K = 0.63

    Q = 0.63 (π/4) (0.60)2 × 10 = 1.78 m3/s       [Discharge is too low; orifice too small]

    Second trial:   d = 0.72; d / D = 0.6. Repeat.

    Find K = 0.65 and Q = 2.65 m3/s       [Still too low]

    Third trial:   d = 0.84; d / D = 0.7. Repeat.

    Find K = 0.70 and Q = 3.87 m3/s       [Discharge is too high; orifice too large]

    Fourth trial:   d = 0.75; d / D = 0.625. Repeat.

    Find K = 0.66 and Q = 2.91 m3/s       [Discharge is short; orifice too small]

    Fifth trial:   d = 0.76; d / D = 0.633. Repeat.

    Find K = 0.665 and Q = 3.01 m3/s       [Discharge is slightly in excess of required discharge]

    Thus, the required orifice diameter is:   d = 0.76 m.

  2. Use Venturi meter equation:   Q = K A2 (2g Δh)1/2

    Solve for Δh:   Δh = Q2 / [2g K2 A22]

    Reynolds number based on throat size:   Red = (4Q) / (πdν) = (4 × 0.6) / (3.1416 × 0.3 × 1.0 × 10-6)

    Red = 2.54 × 106

    d / D = 0.3 / 0.6 = 0.5

    From Fig. 2-51;   K = 1.02

    Δh = (0.6)2 / [2 × 9.81 × (1.02)  2 × [(π/4) (0.3)2]2] = 3.53 m   [H2O]

    Specific gravity of Hg = 13.6

    Δh [Hg] = Δh [H2O] / (13.6 - 1.00) = 0.28 m.

    The manometer deflection is 28 cm.

  3. Solve for the x- component of the force:

    ∑Fx = ρ Q (V2x - V1x)

    p1A1 - p2A2cos 30o + Fanchor, x = ρ Q (V2x - V1x)

    A1 = A2 = (π/4) D2 = 0.7854 × (2)2 = 3.1416 ft2

    V2x = (Q / A2) cos 30o = (30 / 3.1416) × 0.866 = 8.27 fps

    V1x = Q / A1 = 30 / 3.1416 = 9.549 fps

    p1 = 10 lb/in2 × 144 in2/ft2 = 1440 lb/ft2

    p2 = 8 lb/in2 × 144 in2/ft2 = 1152 lb/ft2

    ρ = 62.4 lb/ft3 / 32.2 ft/s2 = 1.94 lbs⋅ s2/ft4

    (1440 × 3.1416) - (1152 × 3.1416 × 0.866) + Fanchor, x = 1.94 × 30 × (8.27 - 9.549)

    F  anchor, x = -1464 lbs     [to the left, against the flow]

    F  anchor, y = 0       [no horizontal force perpendicular to x direction]

    Solve for the z- component of the force:

    ∑Fz = ρ Q (V2z - V1z)

    V1z = 0

    - p2A2sin 30o + Fanchor, z + Wbend + Wwater = ρ Q V2z

    Wbend = - 300 lbs

    Wwater = γ [VOLUME OF BEND] = 62.4 × (π/4) D2 × [LENGTH OF BEND] = 62.4 × 3.1416 × 5 = - 980.2 lb

    V2z = (Q / A2) sin 30o = (30 / 3.1416) × 0.5 = 4.775 fps

    - (1152 × 3.1416 × 0.5) + Fanchor, z - 300 - 980.2 = 1.94 × 30 × (4.775)

    F  anchor, z = 3368 lbs     [upwards, against gravity]

    Force exerted by the anchor on the bend:

    F = -1464 i  +  0 j  +  3368 k.