CIV E 444 - APPLIED HYDRAULICS
FALL 2009
HOMEWORK No. 5 SOLUTION


  1. Use ONLINE CHANNEL 15 to calculate flow conditions u/s:

    Q = 65.92 cfs; An, u/s = 20 ft2; Vn, u/s = 3.296 fps; Tn, u/s = 12 ft.

    With Q = 65.92 cfs, use ONLINE CHANNEL 01 to calculate flow conditions d/s:

    yn, d/s = 2.533 ft; An, d/s = 10.13 ft2; Vn, d/s = 6.506 fps; Tn, d/s = 4 ft.

    Ltransition = [(12/2) - (4/2)] / tan 27.5o = 7.68 ft.

    For design, assume Ltransition = 8 ft. Calculate flow conditions at A = 2, B = 4, and C = 6 ft.

    z1 + y1 + α1V12/(2g) = z2 + y2 + α2V22/(2g)+ hL

    1000 + 2 + [1.2 × (3.296)  2/(2 × 32.17)] =

    z2 + 2.533 + [1.1 × (6.506)  2/(2 × 32.17)] + 0.2 × [(6.506)  2/(2 × 32.17)]

    1002 + 0.203 = z2 + 2.533 + 0.724 + 0.132

    z2 = 998.814 ft.

    y2 = 2.533 ft.

    z2 + y2 = 1001.347 ft.

    Three sections A @ 2 ft, B @ 4 ft, and C at 6 ft.

    dA = 2 - 0.25 (1002 - 1001.347) + 0.25 (1000 - 998.814) =

    dA = 2 - 0.25 (1002 - 1001.347 - 1000 + 998.814)

    dA = 2 + 0.25 (0.533) = 2.133 ft.

    dB = 2 + 0.5 (0.533) = 2.267 ft.

    dC = 2 + 0.75 (0.533) = 2.400 ft.

    dd/s = 2.533 ft.

    Vertical depth at section A:   0.25 × 2.533 = 0.633 ft.

    Vertical depth at section B:   0.50 × 2.533 = 1.267 ft.

    Vertical depth at section C:   0.75 × 2.533 = 1.900 ft.

    Triangular (nonvertical) depth at section A:   2.133 - 0.633 = 1.50 ft.

    Triangular (nonvertical) depth at section B:   2.267 - 1.267 = 1.00 ft.

    Triangular (nonvertical) depth at section C:   2.400 - 1.900 = 0.50 ft.

    Flow area in section A:   [7 + (1.5 × 2)] 2.133 - 1.5  2 = 19.08 ft2

    Flow area in section B:   [6 + (1.0 × 2)] 2.267 - 1.0  2 = 17.14 ft2

    Flow area in section C:   [5 + (0.5 × 2)] 2.400 - 0.5  2 = 14.15 ft2

    VA = 65.92/19.08 = 3.454 fps.

    VB = 65.92/17.14 = 3.846 fps.

    VC = 65.92/14.15 = 4.659 fps.

    z1 + y1 + &alpha1V12/(2g) = zA + yA + αAVA2/(2g) + hL (1 → A)

    1000 + 2 + [1.2 × (3.296)  2/(2 × 32.17)] =

    zA + yA + [1.15 × (3.454)2/(2 × 32.17)] + {0.25 × 0.2 × [(6.506)2/(2 × 32.17)]}

    zA + yA = 1002 + 0.203 - 0.213 - (0.25 × 0.132) = 1001.957 ft.

    zA = 1001.957 - 2.133 = 999.824 ft.

    z1 + y1 + &alpha1V12/(2g) = zB + yB + αBVB2/(2g) + hL (1 → B)

    1000 + 2 + [1.2 × (3.296)2/(2 × 32.17)] =

    zB + yB + [1.15 × (3.846)  2/(2 × 32.17)] + {0.50 × 0.2 × [(6.506)2/(2 × 32.17)]}

    zB + yB = 1002 + 0.203 - 0.264 - (0.50 × 0.132) = 1001.873 ft.

    zB = 1001.873 - 2.267 = 999.606 ft.

    z1 + y1 + &alpha1V12/(2g) = zC + yC + αCVC2/(2g) + hL (1 → C)

    1000 + 2 + [1.2 × (3.296)  2/(2 × 32.17)] =

    zC + yC + [1.15 × (4.659)  2/(2 × 32.17)] + {0.75 × 0.2 × [(6.506)2/(2 × 32.17)]}

    zC + yC = 1002 + 0.203 - 0.388- (0.75 × 0.132) = 1001.716 ft.

    zC = 1001.716 - 2.400 = 999.316 ft.

    Summary:

    z1 = 1000 ft.

    zA = 999.824 ft.

    zB = 999.606 ft.

    zC = 999.316 ft.

    z2 = 998.82 ft.

  2. (a) The water-surface profile is M1.

    (b) Use ONLINE CHANNEL 01 to calculate the normal depth.

    yn = 1.668 m

    The u/s depth to calculate length is 1.668 × 1.01 = 1.684 m.

    Use ONLINE WSP21 to calculate M1 water surface profile, with given data. Leave [number of computational intervals] n blank [default n = 100] and set number of tabular output intervals m = 100.

    (c) From the output table, the total length is L = 7279.4 m.

    (d) From the output table, for y1.01yn = 1.684 m, L = 4779.5 m.

    (e) Percentage: 100 (4779.5/7279.4) = 65.66 %

  3. The ratio H/(H + P) = (0.5)/(0.5 + 2) = 0.2.

    The uncorrected empirical coefficient (Fig. 4-37) is:   C' = 0.86.

    The coefficient, corrected for sloping upstream face:   C' = 0.86 × 1.1 = 0.946

    The discharge:   Q = 0.385 (2g)1/2 C' L H3/2 = 3.088 × 0.946 × 5 × 0.5  3/2

    Q = 5.164 cfs.

  4. Q = (8/15) K (2g)1/2 tan (θ/2) H5/2

    Assume a low (conservative) value of K = 0.57 for head within 0.2-2.0 ft.

    Q = (8/15) × 0.57 × (2 × 32.17)1/2 tan (45o) × 1.25/2 = 3.846 cfs.