CIV E 530 - OPEN-CHANNEL HYDRAULICS

SPRING 2005 - HOMEWORK 11 - SOLUTION

PROBLEM 1

∂Q/∂x + ∂A/∂t = 0

∂Q/∂x + B ∂y/∂t = 0

r = ∂y/∂t

∂Q/∂x + B r = 0

Qd - Qu = - B (Δx) r

Qu = Qd + B (Δx) r

Qu = 650 + 280 (25,000) (4 mm/hr / 3600 s/hr) (1 m / 1000 mm)

Qu = 657.78 m3   ANSWER.

PROBLEM 2

∂Q/∂x + ∂A/∂t = 0

∂Q/∂x + B ∂y/∂t = 0

r = ∂y/∂t

∂Q/∂x + B r = 0

ra = 0.5 (ru + rd) = 6.0

Qd - Qu = - B (Δx) ra

Qu = Qd + B (Δx) ra

Qu = 650 + 280 (25,000) (6.0 mm/hr / 3600 s/hr) (1 m / 1000 mm)

Qu = 661.67 m3   ANSWER.

The second estimate is more accurate, because it is a central finite difference.

PROBLEM 3

F2 = q2/(gy3)

y = [q2/(gF2 ]1/3 = 3.44 m.

F = v/(gy)1/2 = 0.2

v = 0.2 (gy)1/2

cr= (gy)1/2 = (9.81 × 3.44) 1/2 = 5.81 m/s

v = 0.2 × 5.81 = 1.16 m/s

cd = v + cr = 1.16 + 5.81 = 6.97 m/s   ANSWER.

cu = v - cr = 1.16 - 5.81 = -4.65 m/s   ANSWER.

PROBLEM 4

Peak flood Qp= 600 m3/s;

baseflow Qb= 100 m3/s;

So = 0.0007;

Ap = 350 m2;

Tp = 85 m;

β = 1.65;

Δx = 9.8 km = 9,800 m;

Δt = 1 hour = 3,600 s.

 

The mean velocity Vp= Qp/Ap = 600/350 = 1.714 m/s.

The wave celerity is: c = β Vp = 1.65 × 1.714 = 2.828 m/s.

The flow per unit width qo = Qp/Tp = 600/85 = 7.059 m2/s.

The Courant number C = c Δt/Δx = 2.828 m/s × 3600 s / 9,800 m = 1.039

The cell Reynolds number D = qo/(Soc Δx) = (7.059) / (0.0007 × 2.828 × 9,800) = 0.364

The routing coefficients are: C0 = 0.168; C1 = 0.697; and C2 = 0.135.

The routing calculations are shown below.

TimeInflowsC0I2C1I1C2O1O2
0100---100.000
113021.79569.72113.514105.030
215025.14890.63714.193129.979
318030.178104.58117.565152.324
422036.884125.49720.585182.966
525041.914153.38624.726220.025
630050.296174.30229.734254.332
736060.356209.16234.370303.888
845075.445250.99541.067367.506
952087.180313.74449.664450.588
10600100.593362.54860.891524.032
1155092.210418.32570.816581.351
1249082.151383.46478.562544.177
1337062.032341.63273.539477.203

The peak outflow is 581.351 and it occurs at time 11 hr.

The wave has diffused from a peak of 600 to 581, and has translated from t = 10 hr to t = 11 hr.   ANSWER.

 
031108