CIV E 530 - OPEN-CHANNEL HYDRAULICS

SPRING 2003 - HOMEWORK 11 - SOLUTION

PROBLEM 1

Verify that:

hj/ E1 = [(1 + 8F12)1/2 - 3] / [ F12 + 2]

Solution:

hj/ E1 = (y2 - y1) / E1

E1 = y1 + v12/(2g)

E1 = y1 (1 + F12/2)

E1 = (y1/2) (2 + F12)

hj/ E1 = (y2 - y1) / [(y1/2) (2 + F12)]

hj/ E1 = [2 (y2/y1) - 2] / (F12 + 2)

hj/ E1 = [(1 + 8F12)1/2 - 1 - 2] / (F12 + 2)

hj/ E1 = [(1 + 8F12)1/2 - 3] / (F12 + 2)   ANSWER.

 

PROBLEM 2

b= 20 ft

z = 0.

n= 0.03

So = 0.04

y1 = 3 ft.

Find

(a) discharge Q

(b) jump height hj

(c) energy loss ΔE

(d) efficiency E2/E1 and

(e) the distance L of the jump from the dam.

Solution:

v1= (1.486/n) R2/3 S1/2

v1= (1.486/0.03) [(20×3)/(20 + 2×3)]2/3 (0.04)1/2

v1= 17.3 fps.

F1= v1/(g y1) 1/2

F1= 17.3/(32.17 × 3.0) 1/2

F1= 1.76

The flow is supercritical upstream. A hydraulic jump will occur in the channel.

(a)

Q = v1 y1 b

Q = 17.3 × 3.0 × 20.0 = 1038 cfs.   ANSWER.

(b)

E1 = y1 + v12/(2g)

E1 = y1 (1 + F12/2)

E1 = 3.0 [1 + (1.76)2/2]

E1 = 7.65

hj = E1 [(1 + 8F12)1/2 - 3]/[F12 + 2]

hj = 7.65 [(1 + 8 × 1.762)1/2 - 3]/[1.762 + 2]

hj = 3.12 ft.   ANSWER.

(c)

y2 = (1/2) y1 [(1 + 8F12)1/2 - 1]

y2 = (1/2) 3.0 [(1 + 8 × 1.762) 1/2 - 1]

y2 = 6.12 ft.

ΔE = (y2 - y1)3/(4y2y1)

ΔE = (6.12 - 3.0)3/(4 × 6.12 × 3.0)

ΔE = 0.414 ft.   ANSWER.

(d)

E2/E1 = [(8F12 + 1)3/2 - 4F12 + 1] / [8F12 (2 + F12)]

E2/E1 = [(8 × 1.762 + 1)3/2 - 4 × 1.762 + 1] / [8 × 1.762 (2 + 1.762)

E2/E1 = 0.946   ANSWER.

(e)

L = [(yd - y1) - hj] / So

L = [(7.0 - 3.0) - 3.12] / 0.04

L = [4.0 - 3.12] / 0.04

L = 22 ft.   ANSWER.  

 

PROBLEM 3

b= wide rectangular (assume b = 1000 ft).

z = 0.

n= 0.025

So (up) = 0.01

So (tw) = 0.002

y(tw) = 5 ft.

Find the location of the hydraulic jump.

Solution:

q = (1.486/n) y(tw)5/3 So1/2

q = (1.486/0.025) 55/3 0.0021/2

q = 38.86 cfs/ft

Assume b = 1000 ft.

Q = 3886 cfs.

z = 0.

So = 0.01

n = 0.025

Use CHANNEL to calculate

y1 = 3.093 ft.

v1 = 12.565 fps.

F1 = 1.26

y2 = (1/2) y1 [(1 + 8F12)1/2 - 1]

y2 = (1/2) (3.093) [(1 + 8 × 1.262)1/2 - 1]

y2 = 4.18 ft.

Since y(tw) = 5 > 4.18 = y2, the hydraulic jump will occur u/s of the change in slope.   ANSWER.

 

PROBLEM 4

b= 30 ft

Q = 300 cfs

ΔE = 5 ft.

Find y1 and y2.

Solution:

q = 300 / 30 = 10 cfs/ft.

ΔE = [(y2 - y1)3]/(4y1y2)

ΔE = y13 [(y2/y1) - 1]3/(4y1y2)

ΔE = [(y2/y1) - 1]3 y1 /(4y2/y1)

y1 = 4 ΔE (y2/y1) / [(y2/y1) - 1]3       (Eq. 1)

y2/y1 = (1/2) [(1 + 8F12)1/2 - 1]       (Eq. 2)

v1 = q/y1       (Eq. 3)

F1 = v1/(gy1)1/2       (Eq. 4)

Procedure:

Assume F1, use Eq. 2 to calculate y2/y1; then use Eq. 1 to calculate y1; then use Eq. 3 to calculate v1; then use Eq. 4 to calculate F1; stop if calculated F1 is close to assumed one.

F1 y2/y1 y1 v1F1
2.0 2.372 18.369 0.544 0.02
6.0 8.000 0.467 21.413 5.52
6.2 8.282 0.429 23.310 6.27
6.17 8.240 0.434 23.041 6.17

y1 = 0.434 ft.   ANSWER.

y2 = (y2/y1) y1 = 8.240 × 0.434 = 3.576 ft.   ANSWER.

ΔE = [(y2 - y1)3]/(4y1y2) = (3.576 - 0.434)3/(4 × 3.576 × 0.434) = 4.996 ≅ 5.     OK.

 

PROBLEM 5

Rectangular stilling basin.

v = 80 fps.

z = 0.

y1 = 6 ft.

Find:

(a) the sequent tailwater depth

(b) the length of the basin required to confine the jump

(c) the efficiency of the jump

(d) the type of jump.

Solution:

F1 = v1/(gy1)1/2

F1 = 80/(32.17 × 6.0)1/2

F1 = 5.76

(a)

y2 = (1/2) y1 [(1 + 8F12)1/2 - 1]

y2 = 45.96 ft.   ANSWER.

(b)

For F1 = 5.76, L/y2 = 6.1 (Fig. 15.4 Chow)

 

 

L = 6.1 × 45.96 = 280 ft.   ANSWER.

(c)

E2/E1 = [(8F12 + 1)3/2 - 4F12 + 1] / [8F12 (2 + F12)]

E2/E1 = 0.45   ANSWER.

(d)

For F1 = 5.76, the type of jump is steady.   ANSWER.

 
040503