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ABSTRACT 

A new perspective on water-surface profiles is made possible by expressing the gradually 

varied flow equation in terms of the critical slope Sc. In this way, the flow-depth gradient 

(dy/dx) is shown to be strictly limited to values outside the range encompassed by Sc and 

So, in which So is the bed slope. This new perspective improves and completes the 

definition of flow-depth-gradient ranges in the analysis of water surface profiles. 
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INTRODUCTION 

Computations of gradually varied flow (GVF) are part of the routine practice of hydraulic 

engineering. The GVF equation describes steady gradually varied flow in open channels 

(Chow 1959; Henderson 1966). The conventional GVF equation is expressed in terms of 

bed slope So, friction slope Sf, and Froude number F. In this paper, the GVF equation is 

alternately expressed in terms of bed slope So, critical slope Sc, and Froude number F. 

Analysis of this equation reveals that the flow-depth gradient dy/dx is strictly limited to 

values outside the range encompassed by Sc and So. This improves and completes the 

definition of flow-depth-gradient ranges in the analysis of water surface profiles. 

 

GRADUALLY VARIED FLOW EQUATION 

The GVF equation is (Chow 1959, p. 220; Henderson 1966, p. 130): 
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in which y = flow depth, x = distance along the channel, dy/dx = flow-depth gradient, Q = 

discharge, T = top width, A = flow area, and g = gravitational acceleration. This equation 

is valid for small bed slopes, which is usually the case. 

 The friction slope in terms of the Chezy coefficient C is (Chow 1959): 
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in which R = A/P = hydraulic radius, and P = wetted perimeter. 

 The Froude number in terms of discharge is (Chow 1959): 
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Combining Equations 2 and 3 leads to: 
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At normal critical flow, F = 1, and the critical slope is, from Equation 4,  
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Combining Equations 1, 4, and 5: 
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which is strictly valid only as P approaches T, i.e., for a hydraulically wide channel. 

Then, Equation 6 is an asymptotic solution of steady-gradually-varied flow for 

hydraulically wide channels. 

 

 For ease of expression, we rename the flow-depth gradient Sy = dy/dx , and  solve 

for Froude number from Equation 6: 
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Since F2 ≥≥ 0, the flow-depth gradient must satisfy the following inequalities: 

 

S0  ≥≥  Sy  ≤≤ Sc                                                                                                  (8) 
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S0  ≤≤  Sy  ≥≥ Sc                                                                                                                (9) 

which effectively limits the flow-depth gradient to values outside the range encompassed 

by So and Sc.  

Furthermore, Equation 6 can be alternately expressed as follows: 
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 Equation 10 is the GVF equation in terms of bed slope So , critical slope Sc , and 

Froude number F. The bed slope could be positive (steep, critical, or mild), zero 

(horizontal), or negative (adverse). The critical slope (Equation 5) and Froude number 

squared (Equation 3) are always positive. 

 

CLASSIFICATION OF WATER SURFACE PROFILES 

 

We use Equation 10 to develop a classification of water surface profiles based solely on 

the three dimensionless parameters: Sy /Sc , So/Sc , and F. For the sake of completeness, 

subcritical flow is defined as that for which the flow depth is greater than the critical 

depth (F2 < 1) (Chow 1959; Henderson 1966). Paralleling this widely accepted definition, 

subnormal flow is defined as that for which the flow depth is greater than the normal 

depth [F2 < So/Sc]. Supernormal flow is defined as that for which the flow depth is 

smaller than the normal depth [F2 > So/Sc] (USDA SCS 1971). 

 Using Eq. 10, the following combinations of GVF profiles are possible: 

• TYPE 1: SUBCRITICAL/SUBNORMAL 

-- Steep: S1 

-- Critical: C1 

-- Mild: M1 

• TYPE 2A: SUPERCRITICAL/SUBNORMAL 

-- Steep: S2 
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• TYPE 2B: SUBCRITICAL/SUPERNORMAL 

-- Mild: M2 

-- Horizontal: H2 

-- Adverse: A2 

• TYPE 3: SUPERCRITICAL/SUPERNORMAL 

-- Steep: S3 

-- Critical: C3 

-- Mild: M3 

-- Horizontal: H3 

-- Adverse: A3 

 

 A summary of the twelve possible water surfaces profiles is shown in Table 1. 

The classification follows directly from the governing equation (Equation 10) shown at 

the top of the table. It is seen that the general type of profile (Type 1, 2, or 3) determines 

the sign of Sy /Sc (Column 2) and thus, the classification of either backwater or drawdown 

(Column 3). Also, the general type of profile determines the feasible range of  So/Sc  

(Column 4) and thus, the existence of specific profiles types (Steep, Critical, Mild, 

Horizontal, or Adverse) within each general type. Note that not all combinations of Sy /Sc 

and So/Sc are feasible. 

 Unlike the description available in standard references (Chow 1959; Henderson 

1966), the flow-depth-gradient ranges (Table 1, Columns 7 and 8) are now complete for 

all twelve water surfaces profiles. Significantly, the flow depth gradient Sy is shown to be 

outside the range encompassed by Sc and So. 

 Figure 1 shows a graphical representation of flow-depth-gradient ranges in the 

water surface profiles. The arrow shows the direction of computation. For instance, the 

depth gradient for the S3 profile (supercritical/supernormal) decreases from Sc (a finite 

positive value) to 0 (asymptotic to normal flow). Likewise, the depth gradient for the C1 

(subcritical/subnormal) and C3 (supercritical/supernormal) profiles is constant and equal 

to So = Sc . 
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SUMMARY 

The gradually varied flow equation is alternatively expressed in terms of the critical slope 

Sc. In this way, the flow dept gradient (dy/dx) is shown to be strictly limited to values 

outside the range encompassed by Sc and So. This new perspective completes the 

definition of depth-gradient ranges for all water surface profiles. For instance, the flow-

depth gradient for the S3 profile decreases from Sc (a finite positive value) to 0 

(asymptotic to normal depth). Likewise, the flow depth gradient for the C1 and C3 profiles 

is constant and equal to So = Sc. 
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APPENDIX II. NOTATION 

The following symbols are used in this paper: 

A = flow area; 

C = Chezy coefficient; 

F = Froude number; 

g = gravitational acceleration; 

P = wetted perimeter; 

Q = discharge; 

R = hydraulic radius; 

Sc = critical slope; 

Sf = friction slope; 

So = bed slope; 

Sy = flow-depth gradient; 

T = top width; 

x = distance along the channel; and 

y = flow depth.  
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Table 1. Classification of Water Surface Profiles. 
 

Governing Equation: Sy/ Sc = [(S0/ Sc)- F
2]/(1- F2) 

Sy varies 
No. 
(1) 

Sy/ Sc 

(2) 
Profile 

(3) 
So/ Sc 

(4) 
Slope 

(5) 

Depth 
relations 

(6) 
From 
(7) 

To 
(8) 

Type 
(9) 

1. SUBCRITICAL/SUBNORMAL FLOW1: 1>F2< S0/ Sc 
1 Positive Backwater > 1 Steep y > yc > yn So ∞ S1 
2 Positive Backwater = 1 Critical y > yc = yn So= Sc So = Sc C1 
3 Positive Backwater >0; <1 Mild y > yn > yc So 0 M1 

2A. SUPERCRITICAL/SUBNORMAL FLOW2: 1< F2< S0/ Sc 
4 Negative Drawdown  >1 Steep yc > y > yn -∞ 0 S2 

2B. SUBCRITICAL/SUPERNORMAL FLOW3: 1> F2> So/ Sc 
5 Negative Drawdown > 0; < 1 Mild  yn > y > yc -∞ 0 M2 
6 Negative Drawdown = 0 Horizontal y> yc ; yn → ∞ -∞ So = 0 H2 
7 Negative Drawdown < 0 Adverse y> yc ; yn→ ∞ -∞ So < 0 A2 

3. SUPERCRITICAL/SUPERNORMAL FLOW4: 1< F2> S0/ Sc 
8 Positive Backwater >1 Steep  yc > yn > y Sc 0 S3 
9 Positive Backwater = 1 Critical yc = yn > y So  = Sc So = Sc  C3 
10 Positive Backwater > 0; < 1 Mild yn > yc  > y Sc ∞ M3 
11 Positive Backwater = 0 Horizontal yc > y; yn → ∞ Sc ∞ H3 
12 Positive Backwater < 0 Adverse yc > y; yn → ∞ Sc ∞ A3 
 
1Given that S0/Sc > F2 >0, no horizontal or adverse profiles are possible in subcritical /subnormal flow. 
2Given that S0/Sc >1, no critical, mild, horizontal or adverse profiles are possible in supercritical/subnormal flow. 
3Given that S0/Sc <1, no steep or critical profiles are possible in subcritical/supernormal flow. 
4Given that S0/Sc  is not limited, all five profiles are possible in supercritical/supernormal flow
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Fig. 1 Graphical representation of flow-depth-gradient ranges in water surface profiles. 


