[Precipitation]   [Hydrologic Abstractions]   [Catchment Properties]   [Runoff]   [Questions]   [Problems]   [References]     


"Discharge by wells must be balanced by an increase in the recharge of the aquifer, or by a decrease in
the old natural discharge, or by a loss of storage, or by a combination of these."
Charles V. Theis (1940)

This chapter is divided into four sections. Section 2.1 deals with precipitation, its meteorological aspects, quantitative description, spatial and temporal variations, and data sources. Section 2.2 discusses hydrologic abstractions that are important in engineering hydrology: interception, infiltration, surface storage, evaporation, and evapotranspiration. Section 2.3 defines geometric and other catchment properties relevant to hydrologic analysis. Section 2.4 deals with runoff analysis, both in a qualitative and quantitative way. The concepts presented in this chapter are of an introductory nature, intended to provide the necessary background for the more specialized study that will follow.


[Hydrologic Abstractions]   [Catchment Properties]   [Runoff]   [Questions]   [Problems]   [References]      [Top]  


[Catchment Properties]   [Runoff]   [Questions]   [Problems]   [References]      [Top]   [Precipitation]  


[Runoff]   [Questions]   [Problems]   [References]      [Top]   [Precipitation]   [Hydrologic Abstractions]  

Surface runoff in catchments occurs as a progression of the following forms, from small to large:

  1. Overland flow,

  2. Rill flow,

  3. Gully flow,

  4. Streamflow, and

  5. River flow.

Overland flow is runoff that occurs during or immediately after a storm, in the form of sheet flow over the land surface [Fig. 2-30 (a)]. Rill flow is runoff that occurs in the form of small rivulets, primarily by concentration of overland flow. Gully flow is runoff that has concentrated into depths large enough so that it has the erosive power to carve its own deep and narrow channel (b). Streamflow is concentrated runoff originating in overland flow, rill flow, or gully flow and is characterized by well defined channels or streams of sizable depth (c). Streams carry their flow into larger streams, which flow into rivers to constitute river flow (d).

overland flow

Fig. 2-30 (a)  Overland flow.

gully flow

Fig. 2-30 (b)  Gully flow.


Fig. 2-30 (c)  Streamflow.

river flow

Fig. 2-30 (d)  River flow.

A catchment can range from as little as 1 ha (or acre) to millions of square kilometers (or square miles). Small catchments (small watersheds) are those where runoff is primarily controlled by overland flow processes. Large catchments (river basins) are those where runoff is controlled by storage processes in the river channels. Between small and large catchments, there is a wide range of catchment sizes with runoff characteristics falling somewhere between those of small and large catchments. Depending on their relative size, midsize catchments are referred to as either watersheds or basins.

Regardless of their size, catchments can drain either inwards, into lakes (or seasonally dry lakes in arid regions), or outwards, toward the ocean. Catchments draining inwards have endorheic (or inland continental) drainages (Fig. 2-31). Catchments draining outwards have exorheic (or peripheral continental) drainages. Exorheic drainages have a catchment outlet or mouth at the point of delivery to the next largest stream, and ultimately, to the ocean.

The Great Basin

Fig. 2-31  The Great Basin, the largest endorheic basin
in the United States.

The hydrologic characteristics of a catchment are described in terms of the following properties: (1) area, (2) shape, (3) relief, (4) linear measures, (5) topology, (6) density, and (7) drainage patterns.

Catchment Area

Area, or drainage area, is perhaps the most important catchment property. It determines the potential runoff volume, provided the storm covers the whole area. The catchment divide is the loci of points delimiting two adjacent catchments, i.e., the collection of high points separating catchments draining into different outlets. Due to the effect of subsurface flow (groundwater flow), the hydrologic catchment divide may not strictly coincide with the topographic catchment divide (Fig. 2-32). The hydrologic divide, however, is less tractable than the topographic divide; therefore, the latter is preferred for practical use.

The Huallaga river

Fig. 2-32  A river coming out of the ground (Huanuco, Peru).

The topographic divide is delineated on a quadrangle sheet or other suitable topographic map. The direction of surface runoff is perpendicular to the contour lines. All peaks and saddles are identified at the outset (Fig. 2-33). Runoff from a peak is in all directions; runoff from a saddle is in the two opposing directions perpendicular to the saddle axis. The catchment divide is delineated by joining peaks and saddles with a line which remains perpendicular to the topographic contour. The area enclosed within the topographic divide is measured to determine the catchment area.

Campo Creek, California

Fig. 2-33  Delineation of watershed boundary in Campo Creek, Southeast San Diego County,
California (peaks and saddles are shown as purple dots).

In general, the larger the catchment area, the greater the amount of surface runoff and, consequently, the greater the surface flows. Several formulas have been proposed to relate peak flow to catchment area (Chapter 7). A basic formula is:

Qp  =  c A n

in which Qp = peak flow, A = catchment area, and c and n are parameters to be determined by regression analysis. Other peak flow methods base their calculations on peak flow per unit area, for instance, the TR-55 method (Chapter 5).

Catchment Shape

Catchment shape is the outline described by the horizontal projection of a catchment. Horton [28] described the outline of a normal catchment as a pear-shaped ovoid. Large catchments, however, vary widely in shape. A quantitative description is provided by the following formula [26]:

Kf  =  _______
             L 2

in which Kf = form ratio, A = catchment area, and L = catchment length, measured along the longest watercourse. Area and length are given in consistent units such as square kilometers and kilometers, respectively.

An alternate description is based on catchment perimeter rather than area. For this purpose, an equivalent circle is defined as a circle of area equal to that of the catchment. The compactness ratio is the ratio of the catchment perimeter to that of the equivalent circle. This leads to:

             0.282 P
Kc  =  ____________
                A 1/2

in which Kc = compactness ratio, P = catchment perimeter, and A = catchment area, with P and A given in any consistent set of units.

Hydrologic response refers to the relative concentration and timing of runoff (Fig. 2-34). The role of catchment shape in hydrologic response has not been clearly established. Other things being equal, a high form ratio (Eq. 2-50) or a compactness ratio close to 1 (Eq. 2-51) describes a catchment having a fast and peaked catchment response. Conversely a low form ratio or a compactness ratio much larger than 1 describes a catchment with a delayed runoff response. However, many other factors, including catchment relief, vegetative cover, and drainage density are usually more important than catchment shape, with their combined effect not being readily discernible.

hydrologic response of La Leche river

Fig. 2-34  Hydrologic response of La Leche river basin, Lambayeque, Peru.

Catchment Relief

Relief is the elevation difference between two reference points. Maximum catchment relief is the elevation difference between the highest point in the catchment divide (Fig. 2-35) and the catchment outlet. The principal watercourse (or main stream) is the central and largest watercourse of the catchment and the one conveying the runoff to the outlet. Relief ratio is the ratio of maximum catchment relief to the catchment's longest horizontal straight distance measured in a direction parallel to that of the principal watercourse. The relief ratio is a measure of the intensity of the erosional processes active in the catchment.

Highest point in the Missouri river basin

Fig. 2-35  Highest point in the Missouri river basin, along the border between Montana and Idaho,
at 44° 33' 27.01" N  111° 28' 9.74" W.

The overall relief of a catchment is described by hypsometric analysis [52]. This refers to a dimensionless curve showing the variation with elevation of the catchment subarea above that elevation (Fig. 2-36). To develop this curve, the elevation of the highest or maximum point in the catchment divide, corresponding to 0 percent area, is identified. Also, the elevation of the lowest or minimum point of the catchment, corresponding to 100 percent area, is identified. Subsequently, several elevations located between maximum and minimum are selected, and the subareas above each one of these elevations determined by measuring along the respective topographic contour lines. The elevations are converted to height above minimum elevation and expressed in percentage of the maximum height. Likewise, the subareas above each one of the elevations are expressed as percentages of total catchment area. The hypsometric curve shows percent area in the abscissas and percent height in the ordinates (Fig. 2-36). The median elevation of the catchment is obtained from the percent height corresponding to 50 percent area.

hypsometric curve

Fig. 2-36  A hypsometric curve.

The hypsometric curve is used when a hydrologic variable such as precipitation, vegetative cover, or snowfall shows a marked tendency to vary with altitude. In such cases, the hypsometric curve provides the quantitative means to evaluate the effect of altitude.

Other measures of catchment relief are based on stream and channel characteristics. The longitudinal profile of a channel is a plot of elevation versus horizontal distance (Fig. 2-37). At a given point in the profile, the elevation is usually a mean value of the channel bed. Between any two points, the channel gradient (or channel slope) is the ratio of elevation difference to horizontal distance separating them.

longitudinal profile of streams and rivers

Fig. 2-37  Typical shape of the longitudinal profile of streams and rivers.

In the absence of geologic controls, longitudinal profiles of streams and rivers are usually concave upward, i.e. , they show a persistent decrease in channel gradient in the downstream direction as the flow moves from mountain streams to river valleys and into the ocean (Fig. 2-37). The reason for this downstream decrease in channel gradient requires careful analysis. It is known that channel gradients are directly related to bottom friction and inversely related to flow depth. Typically, small mountain streams have high values of bottom friction (due to the presence of cobbles and boulders in the stream bed) and small depths [[Fig. 2-38 (a)]. Conversely, large rivers have comparatively lower values of bottom friction and larger depths [Fig. 2-38 (b)]. This interaction of channel gradient and bottom friction helps explain the typical decrease in channel gradient in the downstream direction.

Rachichuela Creek

Fig. 2-38 (a)  Rachichuela Creek, Lambayeque, Peru.

Mouth of the Amazon river

Fig. 2-38 (b)  Mouth of the Amazon river, Amapa, Brazil.

Convex channel bed profiles (Fig. 2-39) are caused by tectonism, uplift, geologic controls, or rock outcrops predominating over an otherwise alluvial channel morphology in equilibrium. These convex stream profiles usually lead to sediment deposition upstream of the outcrop, and to erosion immediately downstream.

Bed profile of El Barbon-Guadalupe Creek

Fig. 2-39  Bed profile of El Barbon-Guadalupe Creek, Baja California, Mexico.

Channels gradients are usually expressed in dimensionless units. For convenience, they can be also expressed in m km-1, cm km-1, or ft mi-1. In nature, channel gradients vary widely, from higher than 0.1 in very steep mountain streams [see, for instance, Fig. 2-38 (a)], to less than 0.000006 in large tidal rivers [19].

In unusual geomorphological settings, inland rivers may feature very small channel gradients; for instance, the Upper Paraguay river near Porto Murtinho, Brazil, which has an average channel slope of 2 cm km-1 (0.00002) (Fig. 2-40).

Upper Paraguay river at Porto Murtinho, Brazil

Fig. 2-40  Upper Paraguay river near Porto Murtinho, Brazil.

The channel gradient of a principal watercourse is a convenient indicator of catchment relief. A longitudinal profile is defined by its maximum (upstream) and minimum (downstream) elevations, and by the horizontal distance between them (Fig. 2-41). The channel gradient obtained directly from the upstream and downstream elevations is referred to as the S1 slope.

A somewhat more representative measure of channel gradient is the S2 slope, defined as the constant slope that makes the shaded area above it equal to the shaded area below it (Fig. 2-41). An expedient way to calculate the S2 slope is to equate the total area below it to the total area below the longitudinal profile.

sketch of slope gradients

Fig. 2-41  Sketch of S1 and S2 channel gradients.

A measure of channel gradient which takes into account the basin response time is the equivalent slope, or S3. To calculate this slope the channel is divided into n subreaches, and a slope is calculated for each subreach. Based on Manning's equation (Section 2.4), the time of flow travel through each subreach is assumed to be inversely proportional to the square root of its slope. Likewise, the time of travel through the whole channel is assumed to be inversely proportional to the square root of the equivalent slope. This leads to the following equation:

                     Σ Li
                     i = 1
S3  =  [ _______________  ] 2
               Σ ( Li /
Si 1/2 )
               i = 1

in which S3 = equivalent slope, Li = each i of n subreach lengths, and Si = each i of n subreach slopes.

Grid methods are often used to obtain measures of land surface slope for runoff evaluations in small and midsize catchments. For instance, the USDA Natural Resources Conservation Service determines average surface slope by overlaying a square grid pattern over the topographic map of the watershed [79]. The maximum surface slope at each grid intersection is evaluated, and the average of all values calculated. This average is taken as the representative value of land surface slope (Fig. 2-42).

Grid overlay to determine land surface slope

Fig. 2-42  Grid overlay to determine land surface slope.

Example 2-9.

Given a longitudinal profile with the following distances and elevations, calculate the slopes S1, S2, and S3.

Distance (m) 0 5,000 10,000 15,000 20,000
Elevation (m) 900 910 930 960 1000

The maximum and minimum elevations are 1000 and 900 m, respectively. The horizontal distance between them is 20,000 m. Therefore, S1 = 100 / 20,000 = 0.005. With reference to Fig. 2-41, S2 = Y / 20,000. The area under the longitudinal profile is 750,000 m2. The area under S2 is: 20,000 Y / 2 = 10,000 Y. Therefore, Y = 75 m, and S2 = 75 / 20,000 = 0.00375. The individual reaches are all 5000 m long, and the individual slopes are 0.002, 0.004, 0.006, and 0.008 respectively. The application of Eq. 2-52 leads to S3 = 0.0041. The results are shown in Fig. 2-43.

channel gradients

Fig. 2-43  Sketch of S1 and S2 channel gradients.

Linear Measures

Linear measures are used to describe the one-dimensional features of a catchment. For instance, for small catchments, the overland flow length Lo is the distance of surface runoff that is not confined to any clearly defined channel.

The catchment length (or hydraulic length) L is the length measured along the principal watercourse (Fig. 2-44). The principal watercourse (or main stream) is the central and largest watercourse of the catchment and the one conveying runoff to the outlet.

Linear measures of a catchment

Fig. 2-44  Linear measures of a catchment.

The length to catchment centroid Lc is the length measured along the principal watercourse, from the catchment outlet to a point located closest to the catchment centroid (point G in Fig. 2-44). In practice, the catchment centroid is estimated as the intersecting point of two or more straight lines that bisect the catchment area in approximately equal subareas.

Basin Topology

Basin topology refers to the regional anatomy of the stream network. Distributed rainfall-runoff modeling (Chapter 10) requires the hierarchical description of stream connectivity, i.e., of its topology.

Stream Order. The concept of stream order classifies streams in a network following a hierarchical numbering system. Overland flow can be considered as a hypothetical stream of zero order. A first-order stream is that receiving flow from zero-order streams, i.e., overland flow. Two first-order streams combine to form a second-order stream. In general, two m-order streams combine to form a stream of order m + 1. The catchment's stream order is the order of the most-downstream main stem (Fig. 2-45).

concept of stream order
concept of stream order

Fig. 2-45  Concept of stream order.

A catchment's stream order is directly related to its size. Large catchments have stream orders of 10 or more. The evaluation of stream order is highly sensitive to map scale. Therefore, considerable care is needed when using stream order analysis in comparative studies of catchment behavior.

Pfasfstetter Coding System. The Pfafstetter coding system is a widely accepted methodology for the description of watershed/basin topology [**]. The system describes the regional anatomy of a stream network using a hierarchical arrangement of decimal digits.

A Level 0 catchment corresponds to a continental-scale size or, alternatively, one that drains into the ocean. Higher levels represent progressively finer subdivisions of the Level 0 catchment. Theoretically, the system is not limited in the number n of levels. In practice, however, n = 6 to 8 levels are usually sufficient. At each level, each watershed is assigned a specific integer m, varying from m = 0 to 9, based on its location and function within the drainage network.

At each level, watersheds are assigned into three types: (1) basin, (2) interbasin, and (3) internal basin (Table 2-9). A basin is a watershed that does not have upstream inflow. An interbasin is a watershed that has upstream inflow from other watersheds, either basins or interbasins. An internal basin is a watershed that does not have outflow, i.e., it refers to an endorheic or closed basin.

Table 2-9  Subdivision in Pfafstetter Coding System.
No. Type Inflow Outflow
1 Basin NO YES
2 Interbasin YES YES
3 Internal basin YES NO

For each level, from 1 to n, the assignment of Pfafstetter codes is performed as follows:

  1. From the catchment outlet, trace upstream along the main stem, and identify the four (4) tributaries with the largest drainage areas. The watersheds containing these four tributaries are classified as basins and assigned even digits (m = 2, 4, 6, and 8) from downstream to upstream.

  2. The intervening watersheds, i.e., those contributing lateral inflow to the main stem, are classified as interbasins and assigned odd digits (m = 1, 3, 5, and 7) from downstream to upstream.

  3. The last odd digit m = 9 is reserved for the headwater watershed, beyond basin 8. In general, basin 9 should be larger than basin 8; if not, their numbers are switched.

  4. The largest internal basin, if present, is assigned the number 0. Other internal basins, if present, are incorporated into neighboring basins or interbasins.

Figure 2-46 shows a 3-level example of the Pfasfstetter coding system. For each level, say Level 3, the assigned digits (XYm) are appended on to the Level 2 code (XY). For instance, watershed 849 is watershed 8 of Level 1 (coarser), watershed 4 of Level 2 (intermediate), and watershed 9 of Level 3 (finer).

Pfafstetter Coding System

Fig. 2-46  The Pfafstetter coding system for watershed identification (Click -here- to display).

Drainage Density

The catchment's drainage density is the ratio of total stream length (the sum of the lengths of all streams) to catchment area. A high drainage density reflects a fast and peaked runoff response, whereas a low drainage density is characteristic of a delayed runoff response.

The mean overland flow length is approximately equal to half the mean distance between stream channels. Therefore, it can be approximated as one-half of the reciprocal of drainage density:

Lo  =  _______

in which Lo = mean overland flow length, and D = drainage density. This approximation neglects the effect of ground and channel slope, which makes the actual mean overland flow length longer than that estimated by Eq. 2-53. The following equation can be used to estimate overland flow length more precisely:

Lo  =  _________________________
             2D [ 1  -  (Sc /Sc) ] 1/2

in which Sc = mean channel slope, and Ss = mean surface slope.

Drainage Patterns

Drainage patterns in catchments vary widely. The more intricate patterns are an indication of high drainage density. Drainage patterns reflect geologic, soil, and vegetation effects (Fig. 2-47) and are often related to hydrologic properties such as runoff response or annual water yield. Types of drainage patterns that are recognizable on aerial photographs are shown in Fig. 2-48 [30].

drainage patterns affected by geologic features

Fig. 2-47  Drainage patterns as affected by geologic features.

Drainage patterns
Drainage patterns
Drainage patterns
Drainage patterns

Fig. 2-48  Drainage patterns recognizable on aerial photographs.


[Questions]   [Problems]   [References]      [Top]   [Precipitation]   [Hydrologic Abstractions]   [Catchment Properties]  

Surface runoff, or simply runoff, refers to all the waters flowing on the surface of the earth, either by overland sheet flow or by channel flow in rills, gullies, streams, or rivers. Surface runoff is a continuous process by which water is constantly flowing from higher to lower elevations by the action of gravitational forces. Small streams combine to form larger streams which eventually grow into rivers. In time, rivers carry their flow into the ocean, completing the hydrologic cycle.

Runoff is expressed in terms of volume or flow rate. The units of runoff volume are cubic meters or cubic feet. Flow rate (or discharge) is the volume per unit of time passing through a given area. It is expressed in cubic meters per second or cubic feet per second. Flow rate usually varies in time; therefore, its value at any time is the instantaneous or local flow rate. The local flow rate can be averaged over a period of time to give the average value for that period. The local flow rate can be integrated over a period of time to give the accumulated runoff volume, as follows:

 =  Q dt

in which ∀= runoff volume, Q = flow rate, and t = time.

In engineering hydrology, runoff is commonly expressed in depth units. This is accomplished by dividing the runoff volume by the catchment area to obtain an equivalent runoff depth distributed over the entire catchment.

For certain applications, runoff is alternatively expressed in terms of either: (1) peak flow per unit drainage area, (2) peak flow per unit runoff depth, or (3) peak flow per unit drainage area per unit runoff depth. In the first case, the units are cubic meters per second per square kilometer; in the second case, cubic meters per second per centimeter; in the third case, cubic meters per second per square kilometer per centimeter.

Runoff Components

Runoff may consist of water from three sources:

  1. Surface flow,

  2. Interflow, and

  3. Groundwater flow.

Surface flow is the product of effective rainfall, i.e., total rainfall minus hydrologic abstractions. Surface flow is also called direct runoff. Direct runoff has the capability to produce large flow concentrations in a relatively short period of time. Therefore, direct runoff is largely responsible for flood flows.

Interflow is subsurface flow , i.e., flow that takes place in the unsaturated soil layers (vadose zone) located beneath the ground surface (Fig. 2-49). Interflow consists of the lateral movement of water and moisture toward lower elevations, and it includes some of the precipitation abstracted by infiltration. It is characteristically a slow process, but eventually a fraction of the interflow volumes flow into streams and rivers. Typically, the quantities of interflow are relatively small compared to the quantities of surface and groundwater flow.

vadose zone

Fig. 2-49  The vadose zone.

Groundwater flow takes place below the groundwater table in the form of saturated flow through alluvial deposits and other water-bearing geologic formations located beneath the soil mantle (Fig. 2-50) (Chapter 11). Groundwater flow includes the portion of infiltrated volume that has reached the water table by percolation from the overlying soils. Like interflow, groundwater flow is characteristically a slow process. Like surface runoff, groundwater flow is a continuous process, with water constantly moving to lower elevations (or to zones of lower potential). Most groundwater flow is eventually intercepted by streams and rivers, discharging into them. A small portion of groundwater flow, particularly that flowing at great depths, slowly makes its way into the nearest ocean. The average global residence time of groundwater is 1400 years [**].

groundwater flow

Fig. 2-50  Groundwater flow.

Stream Types and Baseflow

Streams may be grouped into three types:

  1. Perennial,

  2. Ephemeral, and

  3. Intermittent.

Perennial streams are those that always have flow. During dry weather (i.e., absence of rain), the flow of perennial streams is baseflow, consisting mostly of groundwater flow intercepted by the stream. Streams that feed from groundwater reservoirs are called effluent streams. Perennial and effluent streams are typical of subhumid and humid regions [(Fig. 2-51 (a)].

Ephemeral streams are those that have flow only in direct response to precipitation, i.e., during and immediately following a major storm. Ephemeral streams do not intercept groundwater flow and therefore have no baseflow. Instead, ephemeral streams usually contribute to groundwater by seepage through their porous channel beds. Streams that feed water into groundwater reservoirs are called influent streams. Channel abstractions from influent streams are referred to as channel transmission losses. Ephemeral and influent streams are typical of arid and semiarid regions [(Fig. 2-51 (b)].

Intermittent streams are those of mixed characteristics, behaving as perennial at certain times of the year and ephemeral at other times. Depending on seasonal conditions, these streams may feed to or from the groundwater [(Fig. 2-51 (c) and (d)].

Indian Creek, California

Fig. 2-51 (a)  Perennial stream:
Indian Creek, California.

Mouth of the Amazon river

Fig. 2-51 (b)  Ephemeral stream:
Mojave river, California.

Gila river, Arizona

Fig. 2-51 (c)  Intermittent stream:
Rosarito Creek, Baja California.

Gila river, Arizona

Fig. 2-51 (d)  Intermittent stream:
Gila river, Arizona.

Baseflow estimates are important in dry weather hydrology; for instance, in the calculation of the total runoff volume produced by a catchment in a year, referred to as the annual water yield. In flood hydrology, baseflow is used to separate surface runoff into: (a) direct, and (b) indirect runoff. Indirect runoff is surface runoff originating in interflow and groundwater flow. Baseflow is a measure of indirect runoff.

Surface runoff versus Baseflow. In practice, surface runoff may or may not include baseflow. The term "surface runoff" is often used at the watershed scale to refer to direct runoff, which ostensibly excludes indirect runoff, i.e., baseflow. Yet, at the basin scale, estimates of surface water yield are known to include both direct and indirect runoff. The confusion is frequently a source of error in hydrologic analysis. For instance, the NRCS runoff curve number method (Chapter 5) was originally developed to calculate direct surface runoff from small watersheds. Yet, over the years since its original inception, the method has also been used to calculate surface runoff from larger watersheds, which may include baseflow.

Antecedent Moisture

Effective precipitation is the fraction of total precipitation that remains on the catchment surface after all the hydrologic abstractions have taken place. During rainy periods, infiltration plays a major role in abstracting total precipitation. Actual infiltration rates and amounts vary widely, being highly dependent on the initial level of soil moisture. Soil moisture varies with the history of antecedent rainfall, increasing with antecedent rainfall and decreasing with a lack of it. For a given storm, the history of antecedent rainfall, which may have caused the soil moisture to depart from an average state, is termed the "antecedent moisture" or "antecedent rainfall" condition. A catchment with low initial soil moisture (e.g., a catchment drier than normal) is not conducive to high surface flow and direct runoff. Conversely, a catchment with high initial soil moisture (e.g., a catchment wetter than normal) is conducive to large quantities of surface flow and direct runoff (Fig. 2-52).

Campo Creek, California

Fig. 2-52  A catchment with high antecedent moisture: Campo Creek, California,
on March 5, 2005, after a few days of heavy rain.

The recognition that direct runoff is a function of antecedent moisture has led to the concept of antecedent precipitation index (API). The average moisture level in a catchment varies daily, being replenished by precipitation and depleted by evaporation and evapotranspiration. The assumption of a logarithmic depletion rate leads to a catchment's API for a day with no rain:

Ii  =  K Ii-1

in which Ii = index for day i, Ii-1 index for day i -1, and K = a recession factor taken normally in the range 0.85 ≤ K ≤ 0.98 [53]. If rain occurs in any day, the rainfall depth is added to the index. The index at day zero (initial value) would have to be estimated. Likewise, the applicable value of K is determined from either data or experience.

The API is directly related to runoff depth. The greater the value of the index, the greater the amount of runoff. In practice, regression and other statistical tools are used to relate runoff to API. These relations are invariably empirical and therefore strictly applicable only to the situation for which they were derived.

Other measures of catchment moisture have been developed over the years. For instance, the Natural Resources Conservation Service (NSCS) uses the concept of antecedent moisture condition (AMC) (Chapter 5), grouping catchment moisture into three levels: AMC I, a dry condition; AMC II, an average condition; and AMC III, a wet condition. Moisture conditions ranging from AMC II to AMC III are normally used in hydrologic design.

Another example of the use of the concept of antecedent moisture is that of the SSARR model (Chapter 13). The SSARR model computes runoff volume based on a relationship linking runoff percent to a soil-moisture index (SMI), with precipitation intensity as a third variable. Runoff percent is the ratio of runoff to rainfall, multiplied by 100. Such runoff-moisture-rainfall relation is empirical and, therefore, is limited to the basin for which it was derived.

Rainfall-Runoff Relations

Rainfall can be measured in a relatively simple way. However, runoff measurements usually require an elaborate streamgaging procedure (Chapter 3). This difference has led to rainfall data being more widely available than runoff data. The typical catchment has many more raingages than streamgaging stations, with the rainfall records likely to be longer than the streamflow records.

The fact that rainfall data is more voluminous than runoff data has led to the calculation of runoff by relying on rainfall data. Although this is an indirect procedure, it has proven its practicality in a variety of applications.

A basic linear model of rainfall-runoff is the following:

Q  =  b ( P - Pa )

in which Q = runoff depth, P = rainfall depth, Pa = rainfall depth below which runoff is zero, and b = slope of the line (Fig. 2-53). Rainfall depths smaller than Pa are completely abstracted by the catchment, with runoff starting as soon as P exceeds Pa. To use Eq. 2-57 it is necessary to collect several sets of rainfall-runoff data and to perform a linear regression to determine the values of b and Pa (Chapter 7). The simplicity of Eq. 2-57 precludes it from taking into account other important runoff-producing mechanisms such as rainfall intensity, infiltration rates, and/or antecedent moisture. In practice, the correlation usually shows a wide range of variation, limiting its predictive ability.

Campo Creek, California

Fig. 2-53  Basic linear model of rainfall-runoff.

The effect of infiltration rate and antecedent moisture on runoff is widely recognized. Several models have been developed in an attempt to simulate these and other related processes. Typical of such models is the NRCS runoff curve number model, which has had wide acceptance in engineering practice. The NRCS model is based on a nonlinear rainfall-runoff relation that includes a third variable (curve parameter) referred to as runoff curve number, or CN. In a particular application, the CN value is determined by a detailed evaluation of soil type, vegetative and land use patterns, antecedent moisture, and hydrologic condition of the catchment surface. The NRCS runoff curve number method is described in Chapter 5.

Runoff Concentration

An important characteristic of surface runoff is its concentration property. To describe it, assume that a storm falling on a given catchment produces a uniform effective rainfall intensity distributed over the entire catchment area. In such a case, surface runoff eventually concentrates at the catchment outlet, provided the effective rainfall duration is sufficiently long. Runoff concentration implies that the flow rate at the outlet will gradually increase until rainfall from the entire catchment has had time to travel to the outlet and is contributing to the flow at that point. At that time, the maximum, or equilibrium, flow rate is reached, implying that the surface runoff has concentrated at the outlet. The time that it takes a parcel of water to travel from the farthest point in the catchment divide to the catchment outlet is referred to as the time of concentration.

The equilibrium flow rate is equal to the effective rainfall intensity times the catchment area:

Qe  =  Ie A

in which Qe = equilibrium flow rate; Ie = effective rainfall intensity; and A = catchment area. This equation is dimensionally consistent; however, a conversion factor is needed in the right-hand side to account for the applicable units. For instance, in SI units, with Qe in liters per second, Ie in millimeters per hour, and A in hectares, the conversion factor is 2.78. In U.S. customary units, with Qe in cubic feet per second, Ie in inches per hour, and A in acres, the conversion factor is 1.008, which is often neglected.

The process of runoff concentration can lead to three distinct types of catchment response. The first type occurs when the effective rainfall duration is equal to the time of concentration. In this case, the runoff concentrates at the outlet, reaching its maximum (equilibrium) rate after an elapsed time equal to the time of concentration. Rainfall stops at this time, and subsequent flows at the outlet are no longer concentrated because not all the catchment is contributing. Therefore, the flow gradually starts to recede back to zero. Since it takes the time of concentration for the farthest runoff parcels to travel to the outlet, the recession time is approximately equal to the time of concentration, as sketched in Fig. 2-54. (In practice, due to nonlinearities, actual recession flows are usually asymptotic to zero). This type of response is referred to as concentrated catchment flow.

Concentrated catchment flow.

Fig. 2-54  Concentrated catchment flow.

The second type of catchment response occurs when the effective rainfall duration exceeds the time of concentration. In this case, the runoff concentrates at the outlet, reaching its maximum (equilibrium) rate after an elapsed time equal to the time of concentration. Since rainfall continues to occur, the whole catchment continues to contribute to flow at the outlet, and subsequent flows remain concentrated and equal to the equilibrium value. After rainfall stops, the flow gradually recedes back to zero. Since it takes the time of concentration for the farthest runoff parcels to travel to the outlet, the recession time is approximately equal to the time of concentration, as shown in Fig. 2-55. This type of response is referred to as superconcentrated catchment flow.

Superconcentrated catchment flow

Fig. 2-55  Superconcentrated catchment flow.

The third type of response occurs when the effective rainfall duration is shorter than the time of concentration. In this case the flow at the outlet does not reach the equilibrium value. After rainfall stops, the flow recedes back to zero. The requirements that volume be conserved and recession time be equal to the time of concentration lead to the idealized flat top response shown in Fig. 2-56. This type of response is referred to as subconcentrated catchment flow.

Subconcentrated catchment flow

Fig. 2-56  Subconcentrated catchment flow

In practice, concentrated and superconcentrated flows are typical of small catchments, i.e., those likely to have short times of concentration. On the other hand, subconcentrated flows are typical of midsize and large catchments, i.e., those with longer times of concentration.

Time of Concentration. Hydrologic procedures for small catchments usually require an estimate of the time of concentration (Chapter 4). However, accurate estimates are generally difficult to make. For one thing, time of concentration is a function of runoff rate; therefore, an estimate can only represent a certain flow level, whether it be low flow, average flow, or high flow.

Several formulas for the calculation of time of concentration as a function of selected catchment parameters are available. Most are empirical in nature and, therefore, of somewhat limited value. Nevertheless, a few are widely used in practice. An alternate approach is to calculate time of concentration by dividing the principal watercourse into several subreaches and assuming an appropriate flow level for each subreach. Subsequently, a steady open-channel flow formula such as the Manning equation is used to calculate the mean velocity and associated travel time through each subreach. The time of concentration for the entire reach is the sum of the times of concentration of the individual subreaches. This procedure, while practical, is based on several assumptions, including a flow-rate level, a prismatic channel, and Manning's n values.

A limitation of the steady flow approach to the calculation of time of concentration is the fact that the flow being considered is generally unsteady. This means that the speed of travel of the wavelike features of the flow (i.e., the kinematic wave speed, Chapters 4 and 9) is greater than the mean velocity calculated using steady flow principles (the Manning equation). For instance, for turbulent flow, kinematic wave theory justifies a wave speed as much as 5/3 times the mean flow velocity, with a consequent reduction in travel time and associated time of concentration. Yet, in many cases, the ratio between kinematic wave speed and mean flow velocity is likely to be less than 5/3:1. In practice, the uncertainties involved in the computation of time of concentration have contributed to a blurring of the distinction between the two speeds.

Formulas for Time of Concentration. Notwithstanding the inherent complexities, calculations of time of concentration continue to be part of the routine practice of engineering hydrology. The time of concentration is a key element in the rational method (Chapter 4) and other methods used to calculate the runoff response of small catchments. Most formulas relate time of concentration to suitable length, slope, roughness, and rainfall parameters [62]. A well-known formula which relates time of concentration to length and slope parameters is the Kirpich formula, applicable to small agricultural watersheds with drainage areas of less than 8 acres (200 ha) [46]. In SI units, the Kirpich formula is:

                             L 0.77
tc  =   0.06628  ___________
                            S 0.385

in which tc = time of concentration, in hours; L = length of the principal watercourse, from divide to outlet, in kilometers; and S = slope between maximum and minimum elevation (S1 slope), in meters per meter. In U.S. customary units, with tc in minutes, L in feet and S in feet per foot, the coefficient of Eq. 2-83 is 0.0078.

The Kerbey-Hathaway formularelates time of concentration to length, slope, and roughness parameters as follows [22]:

                        ( L n ) 0.467
tc  =   0.606  _______________
                            S 0.234

in which n is a roughness parameter and all other terms are the same as in Eq. 2-59, expressed in SI units. Applicable values of n are given in Table 2-10.

Table 2-10  Value of roughness parameter n for use in
Eqs. 2-60 to 2-63 [10].

Type of surface n
Smooth impervious 0.02
Smooth bare-picked soil 0.10
Poor grass, row crops, or moderately rough bare soil 0.20
Pasture 0.40
Deciduous timber land 0.60
Coniferous timber land, or deciduous timber land with deep litter or grass 0.80

The Papadakis-Kazan formula [62] relates time of concentration to length, slope, roughness, and rainfall parameters:

                      L 0.50  n 0.52
tc  =  0.66  _________________
                     S 0.31  i 0.38

in which tc is in minutes; L is in feet; n is a roughness parameter; and i is the effective rainfall in inches per hour.

A physically based approach to the calculation of time of concentration is possible by means of overland flow techniques (Chapter 4). As a first approximation, time of concentration can be taken as the time-to-equilibrium of kinematic overland flow (Eq. 4-50). Therefore:

                     (L n) 1/m
tc  =   ______________________
              S 1/(2 m)  i (m - 1)/m

in which tc is given in seconds; L is in meters; n is a roughness parameter, i is in m/s, and m = exponent of the unit-width discharge-flow depth rating (q = b h m ).

For m = 5/3, applicable to turbulent Manning friction, the kinematic wave time of concentration is:

              (L n) 0.6
tc  =   ______________
             S 0.3  i 0.4

in which tc is in seconds; L is in meters; n is a roughness parameter; and i is the effective rainfall in meters per second. The close resemblance of the exponents of Eqs. 2-63 and 2-61 is remarkable.

Example 2-10.

Use the Kirpich, Hathaway, Papadakis-Kazan, and kinematic wave formulas to estimate time of concentration for a catchment with the following characteristics: L = 750 m, S = 0.01, n = 0.1, and i = 20 mm hr -1.

After conversion to the proper units, the application of Eq. 2-59 leads to tc = 0.3127 hr = 18.76 minutes. The application of Eq. 2-60 leads to tc = 0.531 hr = 31.86 minute. The application of Eq. 2-61 leads to tc = 45.13 minutes. The application of Eq. 2-62 leads to tc = 6716 seconds = 111.94 minutes.

calculator image 

ONLINE CALCULATION. Using ONLINE TIME OF CONCENTRATION, the answer is: Kirpich tc = 18.76 minutes; Kerby-Hathaway tc = 31.73 minutes; Papadakis-Kazan tc = 45.13 minutes. Kinematic wave tc = 111.95 minutes.

Runoff Diffusion and Streamflow Hydrographs

In nature, catchment response shows a more complex behavior than that which may be attributed solely to runoff concentration. Theory and experimental evidence have shown that runoff rates are governed by natural processes of convection and diffusion. Convection refers to runoff concentration; diffusion is the mechanism acting to spread the flow rates in time and space.

The net effect of runoff diffusion is to reduce the flow rates to levels below those that could be attained by convection only. In practice, diffusion acts to smooth out catchment response. The resulting response function is usually continuous, and it is referred to as the streamflow hydrograph, runoff hydrograph, or simply the hydrograph. Typical single-storm hydrographs have a shape similar to that shown in Fig. 2-57. They are usually produced by storms with effective rainfall duration less than the time of concentration. Therefore, they resemble subconcentrated catchment flow, albeit with the addition of a small but perceptible amount of diffusion.

Typical single-storm hydrograph

Fig. 2-57  Typical single-storm hydrograph.

The various elements in a typical single-storm hydrograph are shown in Fig. 2- 58. The zero time (or starting time) depicts the beginning of the hydrograph. The hydrograph peak describes the maximum flow rate. The time-to-peak is measured from zero time to the time at which the peak flow is attained. The rising limb is the part of the hydrograph between zero time and time-to-peak. The recession (or receding limb) is the part of the hydrograph between time-to-peak and time base. The time base is measured from zero time to a time defining the end of the recession. The recession is logarithmic in nature, approaching zero flow in an asymptotic way. For practical applications, the end of the recession is usually defined in an arbitrary manner. The point of inflection of the receding limb is the point corresponding to zero curvature. The hydrograph volume is obtained by integrating the flow rates from zero time to time base.

Elements of single-storm hydrograph

Fig. 2-58  Elements of single-storm hydrograph.

The shape of the hydrograph, showing a positive skew, with recession time greater than rising time, is caused by the essentially different responses of surface flow, interflow, and groundwater flow. Indeed, the runoff hydrograph can be thought of as consisting of the sum of three hydrographs, as shown in Fig. 2-59 (a). The fast and peaked hydrograph is produced by surface flow while the other two are the result of interflow and groundwater flow. The superposition of these hydrographs results in a runoff hydrograph exhibiting a long tail (positive skew), as depicted in Fig. 2-59 (b).

Components of runoff hydrograph

Fig. 2-59  Components of runoff hydrograph.

The feature of positive skew allows the definition of a few additional geometric hydrograph properties. The time-to-centroid tg is measured from zero time to the time separating the hydrograph into two equal volumes (Fig. 2-60). The volume-to-peak Vp is obtained by integrating the flow rates from zero time to time-to-peak. In synthetic unit hydrograph analysis, the ratio of volume-to-peak to hydrograph volume is used as a measure of hydrograph shape (Chapter 5).

Additional single-storm hydrograph properties

Fig. 2-60  Additional single-storm hydrograph properties.

Hydrographs of perennial streams may include substantial amounts of baseflow. The separation of runoff into direct runoff and indirect runoff (baseflow) can be accomplished by resorting to one of several hydrograph separation techniques (Chapter 5). These techniques can also be used in the analysis of multiple-storm hydrographs, which typically exhibit two or more peaks and valleys.

Analytical Hydrographs. Analytical expressions for streamflow hydrographs are sometimes used in hydrologic studies. The simplest formula is based on either a sine or cosine function. These, however, have zero skew (Chapter 6) and therefore do not properly describe the shape of natural hydrographs.

An analytical hydrograph that is often used to simulate natural hydrographs is the gamma function, expressed as follows:

Q  =  Qb  +  (Qp  -  Qb ) [ _____ ] m
 e (tp - t ) / (tg - tp )

in which Q = flow rate; Qb = baseflow; Qp = peak flow; t = time; tp = time-to-peak; tg = time-to-centroid; and m = tp /(tg - tp). For values of tg greater than tp, Eq. 2-64 exhibits positive skew.

Example 2-11.

Use Eq. 2-64 to calculate streamflow hydrograph ordinates at hourly intervals, with the following data: Qb = 100 m3/s; Qp = 500 m3/s; tp = 3 h; and tg = 4.5 h.

The application of Eq. 2-64 leads to:

Q  =   100  +  400 [ _____ ] 2  e (3 - t ) / 1.5

The hydrograph ordinates at hourly intervals are shown in Table 2-11. It is seen that the flow rate at t = 0 is 100 m3/s, it reaches a peak of 500 m3/s at t = 3 h, and it recedes back to 103 m3/s at t = 15 h.

Table 2-11  Calculated gamma hydrograph ordinates: Example 2-11.
Time (h) Flow (m3/s)
0 100
1 269
2 446
3 500
4 465
5 393
6 317
7 251
8 201
9 166
10 142
11 126
12 116
13 110
14 106
15 103

Flow in Stream Channels

Streamflow hydrographs flow in stream channels that are carved on the land surface. The following properties are used to describe stream channels:

  1. Cross-sectional dimensions,

  2. Cross-sectional shape,

  3. Longitudinal slope, and

  4. Boundary friction.

The channel cross section has the following geometric and hydraulic elements: (a) flow area, (b) top width, (c) wetted perimeter, (d) hydraulic radius, (e) hydraulic depth, and (f) aspect ratio. The flow area A is the area of the cross section occupied by the flow. The top width T is the channel width at the elevation of the water surface. The wetted perimeter P is the perimeter of the flow area in direct contact with the land. The hydraulic radius R is the ratio of flow area to wetted perimeter: R = A/P. The hydraulic depth D is the ratio of flow area to top width: D = A/T. The aspect ratio, a measure of cross-sectional shape, is the ratio of top width to hydraulic depth (T/D).

Channel top widths vary widely, ranging from a few meters for small mountain streams to several kilometers for very large rivers. Mean flow depths range from as low as a fraction of a meter for small mountain streams to more than 50 m for very large rivers. [The maximum depth of the Amazon river, the largest in the world, is close to 90 m]. Aspect ratios vary widely in nature; however, most streams and rivers have aspect ratios in excess of 10. Very wide streams (e.g., braided streams) may have aspect ratios exceeding 100.

The longitudinal channel slope is the change in elevation with distance. The mean bed elevation is generally used to calculate channel slope. For short reaches or mild slopes, slope calculations may be hampered by the difficulty of accurately establishing the mean bed elevation. A practical alternative is to use the water surface slope as a measure of channel slope. The water surface slope, however, varies in space and time as a function of the flow nonuniformity and unsteadiness. The steady equilibrium (i.e., uniform) water surface slope is usually taken as a measure of channel slope. Therefore, mean bed slope and steady equilibrium water surface slope are often treated as synonymous. Generally, the longer the channel reach, the more accurate the calculation of channel slope.

Boundary friction refers to the type and dimensions of the particles lining the channel cross section below the waterline. In alluvial channels, geomorphic bed features such as ripples and dunes may represent a substantial contribution to the overall friction (Chapter15). Particles lying on the channel bed may range from large boulders for typical mountain streams (Fig. 2-61) to silt particles in the case of large tidal rivers.

Flow in a mountain stream

Fig. 2-61  Flow in a mountain stream.

For small streams, particles on the channel banks may be as large as the particles on the bottom. River banks, however, are likely to consist of particles of much varied size than those on the channel bottom. The high aspect ratio of rivers generally results in the banks contributing only a small fraction of the total boundary friction. Therefore, the boundary friction is often taken as synonymous with bed or bottom friction.

Uniform flow formulas. Flow in streams and rivers is evaluated by using empirical formulas such as the Manning or Chezy equations. The Manning formula is:

V  =  _____ R 2/3 S 1/2

in which V = mean flow velocity, in meters per second; R = hydraulic radius, in meters; S = channel slope, in meters per meter; and n = Manning friction coefficient. In U.S. customary units, with V in feet per second, R in feet, and S in feet per foot, the right side of Eq. 2-65 is multiplied by the constant 1.486.

In natural channels, n can take values as low as 0.02 and as high as 0.2 in some unusually high roughness cases (e.g., flood plains adjacent to rivers). A good working value for a clean, straight, full-stage stream of fairly uniform cross section is 0.03. Typical n values for natural streams and rivers are in the range 0.03-0.05.

A U.S. Geological Survey study [4] has documented n values for natural streams ranging from as low as n = 0.024 for the Columbia River at Vernita, Washington (a large river with streambanks largely devoid of vegetation) [(Fig. 2-62 (a)], to as high as n = 0.079 for Cache Creek near Lower Lake, California (a small stream with large, angular boulders in the bed, and exposed rocks, boulders, and trees in the banks) [(Fig. 2-62 (b)].

Columbia River at Vernita, Washington

Fig. 2-62 (a)  Columbia River at Vernita, Washington.

Cache Creek near Lower Lake, California

Fig. 2-62 (b)  Cache Creek near Lower Lake, California.

The Chezy equation is

V  =  C R 1/2 S 1/2

in which C = Chezy coefficient, in m1/2 s-1; and other terms are the same as for Eq. 2-65. Chezy coefficients equivalent to the preceding conditions range from about 80 m1/2 s-1 for large rivers to about 10 m1/2 s-1 for small streams. Typical C values for natural streams and rivers are in the range 25-50 m1/2 s-1.

Equation 2-66 can be expressed in dimensionless form as follows:

V  =  _______ g 1/2 R 1/2 S 1/2
            g 1/2

in which g = gravitational acceleration, and C/g1/2 = dimensionless Chezy coefficient. Dimensionless Chezy coefficients equivalent to the preceding conditions range from 25.5 for large rivers to 3.2 for small streams. Typical values for natural streams and rivers are in the range 8-16.

For certain applications, Eq. 2-67 can be readily transformed into a formula with an enhanced physical meaning. For hydraulically wide channels, i.e., those with aspect ratio greater than 10, the top width and wetted perimeter can be assumed to be approximately the same. This implies that the hydraulic depth (D) can be substituted for the hydraulic radius (R), leading to:

S  =  f F 2

in which f = a dimensionless friction factor equal to f = g/C 2, and F = Froude number, equal to F = V / (gD)1/2. It can be shown that the friction factor in Eq. 2-68 is equal to one-eight (1/8) of the Darcy-Weisbach friction factor fD used in the hydraulics of closed conduits. Dimensionless friction factors equivalent to the preceding conditions range from 0.0016 for large rivers to 0.097 for small streams. Typical values for natural streams and rivers are in the range 0.004-0.016.

Equation 2-68 states that for hydraulically wide channels, the channel slope is proportional to the square of the Froude number, with the friction factor f as the proportionality coefficient. In practice, Eq. 2-68 be used as a convenient predictor of any of these three dimensionless parameters, once the other two are known. Furthermore, it implies that if one of the three parameters is kept constant, a change in one of the other two causes a corresponding change in the third.

Notwithstanding the theoretical appeal of Eqs. 2-66 and 2-68, the Manning equation has had wider acceptance in practice. This is attributed to the fact that in natural channels, the Chezy coefficient is not constant, tending to increase with hydraulic radius. The comparison of Eqs. 2-65 and 2-66 leads to:

C  =  _____ R 1/6

Equation 2-69 implies that, unlike Chezy C, Manning n is a constant. Experience has shown, however, that at a given cross-section, n may vary with discharge and stage (Fig. 2-63). Moreover, as stage varies from low to high, alluvial rivers can move their beds and generate/erase ripples and dunes, increasing/decreasing channel friction (Chapter 15).

Upper Paraguay river

Fig. 2-63  A large river overflowing onto the adjacent flood plain (Mato Grosso, Brazil).

River Stages. At any location along a river, the river stage is the elevation of the water surface above a given datum. This datum can be either an arbitrary one or the NAVD (North American Vertical Datum), the national geodetic vertical datum, a standard measure of mean sea level.

River stages are a function of flow rate. Flow rates can be grouped into: (1) low flow, (2) average flow, and (3) high flow. Low flow is typical of the dry season, when streamflow is largely composed of baseflow originating mostly in contributions from groundwater flow. High flow occurs during the wet season, when streamflow is primarily due to contributions from surface runoff. Average flow usually occurs midseason and may have mixed contributions from surface runoff, interflow, and groundwater flow.

Low flows studies are necessary when determining minimum flow rates, below which a certain use would be impaired. Examples of such uses are irrigation requirements, hydropower generation, and minimum instream flows needed for fisheries protection and compliance with water pollution regulations. Excessive use of groundwater may lead to baseflow losses; thus, Increasingly, surface runoff studies are focusing on baseflow and low flows.

Average flows play an important role in the calculation of monthly and annual volumes available for storage and use. Applications are usually found in connection with the sizing of storage reservoirs.

High flow studies are related to the floods and flood hydrology. Typically, during high flows, natural streams and rivers have the tendency to overflow their banks, with stages reaching above bank-full stage. In such cases, the flow area includes a portion of the land located adjacent to the river, on one or both sides. In alluvial valleys, the land that is subject to inundation during periods of high flow is referred to as the flood plain (Fig. 2-64). The evaluation of high flows is necessary for flood forecasting, control, and mitigation.

Flood plain flooding

Fig. 2-64  Flood plain flooding (Mato Grosso, Brazil).

Rating Curves. It is known that river stage varies as a function of discharge, but the exact nature of the relationship is not readily apparent. Given a long and essentially prismatic channel reach, a single-valued relationship between stage and discharge at a cross section defines the equilibrium rating curve. For steady uniform flow, the rating curve is unique, i.e., there is a single value of stage for each value of discharge and vice versa (Fig. 2-65). In this case, the equilibrium rating curve can be calculated with either the Manning or Chezy equations. In open-channel hydraulics, this property of uniqueness of the rating qualifies the channel reach as a channel control.

A typical rating curve

Fig. 2-65  A typical rating curve.

However, other flow conditions, specifically nonuniformity (gradually varied steady flow) and unsteadiness (e.g., gradually varied unsteady flow), can cause deviations from the steady equilibrium rating. These deviations are less tractable. In particular, flood wave theory justifies the presence of a loop in the rating, as shown in Fig. 2-66. Intuitively, the rising limb of the flood-wave hydrograph has a steeper water surface slope than that of equilibrium flow, leading to greater flows and lower stages. Conversely, the receding limb has a milder water surface slope, resulting in smaller flows and higher stages; thus the rationale for the loop's presence. The loop effect, however, is likely to be small and is usually neglected on practical grounds. Where increased accuracy is required, unsteady flow modeling can be used to account for the looped rating (Chapter 9).

looped rating curve

Fig. 2-66  A looped rating curve.

Two other processes related to sedimentation have a bearing in the evaluation of stage-discharge relations: (1) the short-term effects, and (2) long-term effects. The short-term effects are due to the fact that the amount of boundary friction varies with flow rate. Rivers flowing on loose boundaries composed of gravel, sand, and silt constantly try to minimize their changes in stage. This is accomplished through the following mechanism: During low flow, the bed friction consists not only of grain friction but also of form friction, caused by bed features such as ripples and dunes (Chapter 15). During high flows, the swiftness of the current acts to obliterate the bed features, reducing form friction to a minimum, essentially with only grain friction remaining. The reduced friction during high flows gives rivers the capability to carry a greater discharge for a given stage. This explains the demonstrated shift from low-flow rating to high-flow rating in natural river channels (Fig. 2-63).

The long-term sedimentation effect is due to the fact that rivers continuously subject their boundaries to recurring cycles of erosion and deposition, depending on the sediment load they carry (Chapter 15). Some very active rivers may be eroding; others may be aggrading. Moreover, some geomorphologically active rivers may substantially change their cross sections during major floods. Invariably, shifts in rating are the net result of these natural geomorphic processes.

Rating curve Formulas. In spite of the apparent complexities, rating curves are a useful and practical tool in hydrologic analysis, allowing the direct conversion of stage to discharge and vice versa. Discharge can be obtained from the rating by the simple procedure of measuring the stage. Conversely, if discharge is known, for instance, at a catchment outlet, stage at the outlet can be readily determined from a suitable rating.

There are several ways to determine an equation for the rating. Invariably, they are based on curve-fitting stage-discharge data. A widely used equation is the following [45]:

Q  =  a (h - ho ) b

in which Q = discharge; h = gage height; ho = reference height; and a and b are constants. Several values of reference height are tried. The proper value of reference height is that which makes the stage-discharge data plot as close as possible to a straight line on logarithmic paper. Subsequently, the values of the constants a and b are determined by regression analysis (Chapter 7).

Streamflow Variability

The study of streamflow variability is the cornerstone of engineering hydrology. Streamflow and river flow vary not only seasonally, but also annually, multiannually, and with climate and geographic location. Global climate change may also affect streamflow variability. Over the long term, the total amount of streamflow is directly related to the amount of environmental moisture, i.e., the moisture present in soil and air. The inland advection of water vapor supplies the moisture which eventually constitutes precipitation. Whether this moisture reaches the catchment outlet remains to be determined by further analysis.

On an average global basis, mean annual runoff, measured at the mouths of peripheral continental basins, amounts to about 39 percent of total precipitation. Most of the remainder, about 59 percent, is accounted for by the long-term abstractive processes of evaporation and evapotranspiration, which include evaporation from water bodies, evaporation from soil and bare ground, and evapotranspiration from vegetation. A small percentage, about 2 percent, percolates deep enough into the ground to bypass the surface waters, eventually discharging into the ocean (Fig. 2-67).

A typical rating curve

Fig. 2-67  Average global components of the water balance.

Seasonal Variability. A typical catchment in a subhumid region may show runoff rates and volumes varying throughout the year, with a tendency to low flows during the dry season and high flows during the wet season. However, a catchment in a more extreme climate will show a quite different behavior. In the ephemeral streams typical of arid regions, runoff is nonexistent during periods of no precipitation; for these streams, runoff occurs only in direct response to precipitation. On the other hand, in humid and extremely humid climates, rivers show substantial amounts of runoff throughout the year, with relatively little variability between the seasons.

The reason for the seasonal variability of streamflow lies in the relative contributions of direct (surface flow) and indirect runoff (mostly groundwater flow). In subhumid regions, indirect runoff is a small, but nevertheless measurable, fraction of total runoff. On the other hand, in arid regions, particularly for ephemeral streams, indirect runoff is either zero or negligible. Furthermore, in humid regions, indirect runoff is substantial throughout the year, often being a sizable fraction of total runoff.

The phenomenon described above can be further explained in the following way: Groundwater reservoirs act to store large amounts of water, which are slowly transported to lower elevations. The bulk of this water (about 98% on a global basis) is eventually released back to the surface waters. With seepage being the dominant process, the flow of groundwater is slow and, therefore, subject to a substantial amount of diffusion. The net effect is that of a permanent contribution from groundwater to surface water in the form of baseflow, or the dry-weather flow of rivers (Fig. 2-68). To evaluate the seasonal variability of streamflow, it is therefore necessary to examine the relationship between surface water and groundwater.

Large spring contributing to baseflow

Fig. 2-68  Large spring contributing to baseflow.

Annual Variability. Year-to-year streamflow variability shows some of the same features as those of seasonal streamflow variability. For instance, large catchments show runoff variability from one year to the next as a function of the state of moisture at the end of the first year and of the precipitation amounts added during the second year. As in the case of seasonal variability, annual streamflow variability is linked to the relative contributions of direct and indirect runoff. During dry years, precipitation goes on to replenish the catchment's soil moisture deficit, with little of it showing as direct runoff. This results in the low levels of runoff that characterize dry years. Conversely, during wet years, the catchment's moisture storage capacity fills up quickly, and any additional precipitation is almost entirely converted into surface runoff. This produces the high streamflow levels that characterize wet years. Annual streamflow variability is, therefore, intrinsically connected to the relative contributions of direct and indirect runoff.

A line of inquiry that is becoming increasingly popular is to focus on the mechanics of surface flow, interflow, and groundwater flow, while accounting for the spatial and temporal variability of the various physical, chemical, and biological processes involved at the various scales. However, the dearth of reliable data for all phases of the hydrologic cycle makes the evaluation of streamflow using a purely mechanistic approach a rather complex undertaking. Recent progress has been made in the coupling of mathematical models with geographic information systems, digital elevation models, and other spatially related software.

A practical alternative which has enjoyed wide acceptance in applications of flood hydrology is the reliance on statistical tools to compensate for the incomplete knowledge of the physical processes. Over the years, this has given rise to the concept of flow frequency, or commonly, flood frequency, expressed as the average period of time (i.e., the return period) that it will take a certain flood level to recur at a given location. An annual flood series is abstracted from daily discharge measurements at a given gaging station. This is accomplished by either selecting the maximum daily flow for each of n years of record (the annual maxima series), or by selecting the n greatest flow values in the entire n-year record, regardless of when they occurred (the annual exceedance series) (Chapter 6). The statistical analysis of the flood series permits the calculation of the flow rates associated with one or more chosen frequencies.

The procedure is relatively straightforward, but it is limited by the record length. Its predictive capability decreases sharply when used to evaluate floods with return periods substantially in excess of the record length. An advantage of the method is its reproducibility, which means that two persons are likely to arrive at the same result when using the same methodology. This is a significant asset when comparing the relative merits of competing water resources projects. Methods for flood frequency analysis are discussed in Chapter 6.

Recently, a complicating factor has arisen in flood frequency analysis. Global climate change promises to change the long-term depth-duration-frequency precipitation relations and, therefore, the magnitude and frequency of floods. Then, a historical flood record, however long, would have essentially lost its pristine character and could only serve as a rough indication for present and future analyses.

Daily-flow Analysis. The variability of streamflow can also be expressed in terms of the day-to-day fluctuation of flow rates at a given station. Some streams show great variability from day to day, with high peaks and low valleys succeeding one another endlessly. Other streams show very little day-to-day variability, with high flows being not very different from low flows.

The reason for this difference in behavior can be attributed to differences in the nature of catchment response. Small and midsize catchments are likely to have steep gradients and therefore to concentrate flows with negligible runoff diffusion, producing hydrographs that show a large number of high peaks and corresponding low valleys. Conversely, large catchments are likely to have milder gradients and therefore to concentrate flows with substantial runoff diffusion. The diffusion mechanism acts to spread the flows in time and space, resulting in a succession of smooth hydrographs showing low peaks and comparatively high valleys.

Daily flow data may not be sufficient to allow calculation of the runoff volumes produced by small watersheds. In cases where accuracy is required, hourly flows (or perhaps flows measured at 3-h intervals) may be necessary to describe adequately the temporal variability of the flow.

In the past four decades, the development of stochastic models of streamflow variability has resulted in a substantial body of knowledge referred to as stochastic hydrology. For a detailed treatment of this subject, see [8, 70, 89].

Flow-duration Curve. A practical way to evaluate day-to-day streamflow variability is the flow-duration curve. To determine this curve for a particular location, it is necessary to obtain daily flow data for a certain period of time. either 1 y or a number of years. The length of the record indicates the total number of days in the series. The daily flow series is sequenced in decreasing order, from the highest to the lowest flow value. with each flow value being assigned an order number. For instance, the highest flow value would have order number one; the lowest flow value would have the last order number, equal to the total number of days. For each flow value, the percent time is defined as the ratio of its order number to the total number of days, expressed in percentage. The flow-duration curve is obtained by plotting flow versus percent time, with percent time in the abscissas and flow in the ordinates (Fig. 2-69).

A typical rating curve

Fig. 2-69  A flow-duration curve.

A flow-duration curve allows the evaluation of the permanence of characteristic low-flow levels. For instance, the flow expected to be exceeded 90 percent of the time can be readily determined from a flow-duration curve. The permanence of low flows is increased with streamflow regulation. The usual aim is to be able to assure the permanence of a certain low-flow level 100 percent of the time. Regulation causes a shift in the flow-duration curve by increasing the permanence of low flows while decreasing that of high flows (Fig. 2-67). Streamflow regulation is accomplished with storage reservoirs.

The flow-duration curve is helpful in the planning and design of water resources projects. In particular, for hydropower studies, the flow-duration curve serves to determine the potential for firm power generation. In the case of a run-of-the-river plant, with no storage facilities, the firm power is usually assumed on the basis of flow available 90 to 97 percent of the time.

Flow-mass Curve. Another way to evaluate day-to-day (and seasonal) streamflow variability is the flow-mass curve. A mass curve of daily values of a variable is a plot of time in the abscissas versus cumulative values of the variable in the ordinates. When using flow values, such a plot is referred to as the flow-mass curve.

For daily flow records in cubic meters per second, the ordinates of the flow mass curve are in cubic meters or cubic hectometers (1 cubic hectometer = 1 million cubic meters). For any given day, the ordinate of the flow-mass curve is the accumulated runoff volume up to that day. According to Chow [10], the flow-mass curve is believed to have been first suggested by Rippl [69]; hence the name Rippl curve. The shape of the flow-mass curve resembles that of the letter S (Fig. 2-68); therefore, it is also referred to as the S-curve.

Applications of flow-mass curves are to reservoir design and operation, including the determination of reservoir capacity and the establishment of operating rules for storage reservoirs. Figure 2-70 shows a typical flow-mass curve. At any given time, the slope of the mass curve is a measure of the instantaneous flow rate. The slope of the line PQ, drawn between the points P and Q, represents the average flow between the two points. The slope of the line AB, drawn between the starting point A and the ending point B, is the average flow for the entire period.

A typical flow-mass curve

Fig. 2-70  A typical flow-mass curve.

To use the flow-mass curve for reservoir design, two lines parallel to line AB and tangent to the flow-mass curve are drawn (Fig. 2-68). The first one, A'B', is tangent to the mass curve at the highest tangent point C. The second one, A"B", is tangent to the mass curve at the lowest tangent point D. The vertical difference between these two tangent lines, in cubic meters, is the storage volume required to release a constant flow rate. This constant release rate is equal to the slope of the line AB. A reservoir with a volume equal to AA" at the start would be full at C and empty at D, with no spill (excess volume) or shortage (deficit). A reservoir that is empty at the start has water while the S curve remains above the AB line and is empty (show a deficit) when the S curve moves below that line. A reservoir that is full at the start will spill water (excess volume) as long as the inflow remains greater than the outflow (from A to C).

The draft rate (or demand rate) is the release rate required to fulfill downstream needs, such as irrigation or power generation. A line having a slope equal to the draft rate is the draft line. The draft rate need not be necessarily constant. In practice, reservoir withdrawals are variable, leading to a variable draft rate and variable draft line, which amounts to an outflow mass curve. The superposition of inflow and outflow mass curves enables the detailed analysis of reservoir storage.

The residual mass curve is a plot of the differences between the S curve ordinates and the corresponding ordinates from line AB. The ordinates of the residual mass curve can be either positive or negative. The residual mass curve accentuates the peaks and valleys of the cumulative flow record.

Range is the difference between the maximum and minimum ordinates of the residual mass curve for a given period. Range analysis was pioneered by Hurst [31, 32] who proposed the following formula for the calculation of maximum range:

R  =   s ( ____ ) 0.73

in which R = reservoir storage volume required to guarantee a constant release rate equal to the mean of the data (annual runoff volume) over a period of N years, and s = the standard deviation of the data (annual runoff volume) (Chapter 6) (Fig. 2-71).

Lake Oroville, California

Fig. 2-71  Lake Oroville, California.

Equation 2-71 was derived by curve-fitting data for a wide variety of natural phenomena. The exponent 0.73 was the mean of values varying between 0.46 and 0.96. A theoretical analysis based on the normal probability distribution (Chapter 6) showed that the exponent of Eq 2-71 should be 0.5 instead of 0.73. This apparent discrepancy between theory and data, known as the Hurst phenomenon, has been the subject of numerous studies [47].

Geographical Variability of Streamflow. Streamflow varies from one catchment to another and from one geographical region of a certain climate to another of a different climate. Moreover, exorheic and endorheic drainages have quite different streamflow patterns. While the outflow from an exorheic drainage is finite (nonzero), that of an endorheic drainage is zero, i.e., in the latter, no surface flow has a chance to leave the basin.

In exorheic drainages, the geographical variability of streamflow can be explained in terms of:

  1. Catchment area,

  2. Precipitation rates, amounts, seasonality, and climate, and

  3. Temporal frame of reference.

Intuitively, the volume available for runoff is directly proportional to the catchment area. This, however, is tempered by the available precipitation, which is conditioned by the prevailing climate. The temporal frame refers to whether the streamflow evaluation is for short-term runoff (event, or storm, runoff) or long-term runoff (annual water yield).

The catchment area is important in short-term evaluations, not only because of the potential runoff volume, but also because larger catchments tend to have milder overall gradients. (While the upper limit to catchment relief is in the thousands of meters, the upper limit to catchment length is in the thousands of kilometers; a three order-of-magnitude difference). This causes increased runoff diffusion, while increasing the chances for infiltration and loss of surface water to groundwater. In flood hydrology applications, the net effect is a decrease in peak discharge per unit area.

The above reasoning is supported by data showing peak flows to be directly related to catchment area, as shown in Eq. 2-49. Consequently, the peak discharge per unit area is:

qp  =  _____

in which qp = peak discharge per unit area, in m3 s-1 km-2 (or alternatively, in ft3 s-1 mi-2); A = catchment area, in km2 (or mi2), and c and m are empirical constants, with m = 1 - n. Since n is generally less than 1, it follows that m is also generally less than 1. Equation 2-72 confirms that peak discharge per unit area is inversely related to drainage area. An example of such a trend is given by the classical Creager curves, shown in Fig. 2-72 [14]:

qp  =  46 C A ( 0.894 A - 0.048  -  1 )

Values of C in the range 30-100 encompass most of the flood data compiled by Creager et al. [14]. This range can be taken as a measure of the regional variability of flood discharges. Equation 2-73, however, limits itself to providing a peak discharge per unit area, wIth no connotation of frequency attached to the calculated values.

Creager curves

Fig. 2-72  Creager curves:  Flood discharge per unit area versus drainage area (Click -here- to display).

For short-term (event or storm) runoff evaluations, the precipitation rate and catchment abstractive capability determine the streamflow variability from catchment to catchment. In small catchments, runoff is characterized by the event runoff coefficient C, i.e., the ratio of storm runoff depth to storm rainfall depth (Chapter 4). This ratio increases with the impermeability of the catchment surface, from values close to zero (0.10 ≤ C ≤ 015) for highly permeable surfaces, to values close to one (0.80 ≤ C ≤ 0.95) for highly impermeable surfaces. This underscores the role of infiltration as the leading abstracting mechanism in the short term (storm event).

For long-term (runoff or water yield) runoff evaluations, geographical location and associated climate determine to a large extent the seasonal and annual variability of streamflow. In the typical exorheic drainage, mean annual runoff increases with environmental moisture, i.e., the moisture present in soil and air. The mean annual runoff coefficient K, i.e., the ratio of mean annual runoff to mean annual rainfall, varies from 0.02 ≤ K ≤ 0.15 in arid and semiarid regions, to 0.5 ≤ K ≤ 0.7 in humid and extremely humid regions. Thus, in arid and semiarid regions, a larger fraction of total precipitation (0.85-0.98) is returned to the atmosphere, mostly via evaporation from soil and bare ground. Conversely, in humid and extremely humid regions, a smaller fraction of total precipitation (0.3-0.5) is returned to the atmosphere, primarily through evaporation from water bodies and evapotranspiration from vegetation. This depicts the importance of evaporation and evapotranspiration as the leading abstractive mechanisms in the long term (runoff yield).


[Problems]   [References]      [Top]   [Precipitation]   [Hydrologic Abstractions]   [Catchment Properties]   [Runoff]  

  1. Describe the frontal lifting of air masses.

  2. What is orographic lifting? What is thermal lifting?

  3. Describe the concept of rainfall frequency.

  4. What is the PMP? What is the PMF?

  5. In what case is the isohyetal method preferred over the Thiessen polygons method?

  6. When is an IDF curve used? When is a Depth-Duration-Frequency value used?

  7. How does average annual precipitation affect climate?

  8. When is the normal ratio method used to fill in missing precipitation records?

  9. What is a double-mass analysis?

  10. What type of storm is likely to be subtantially abstracted by interception?

  11. What factors affect the process of infiltration?

  12. Compare the Horton and Philip infiltration formulas.

  13. What type of application justifies the use of a φ-index?

  14. In what case is depression storage likely to be important in runoff evaluation?

  15. What is the basis of the energy budget method for determining reservoir evaporation?

  16. What is albedo? What is the albedo of a forest? Of a desert?

  17. What assumptions did Penman use in deriving his evaporation formula?

  18. What is transpiration? Why is it considered a hydrologic abstraction?

  19. What is potential evapotranspiration? What is actual evapotranspiration?

  20. What is reference crop evapotranspiration?

  21. What is the rationale for using evaporation formulas in the evaluation of evapotranspiration?

  22. What are the various types of surface flow that can occur in nature?

  23. What is a hypsometric curve? When is it used?

  24. Derive the formula for equivalent slope (Eq. 2-52).

  25. What is interflow? What is groundwater flow?

  26. What is direct runoff? What is indirect runoff?

  27. How does an ephemeral stream differ from an intermittent stream?

  28. Why is the catchment's antecedent moisture important in flood hydrology?

  29. What is catchment response? What is runoff concentration? What is runoff diffusion?

  30. Why do single-storm streamflow hydrographs generally exhibit a long tail?

  31. Why is the Manning equation preferred over the Chezy equation in practice?

  32. What is the advantage of the Chezy equation?

  33. Discuss low flows and high flows in connection with arid and humid climates.

  34. What is a rating curve? What are the various processes likely to affect a rating?

  35. How can seasonal and annual streamflow variability be explained?

  36. What is the reason for the high peaks and low valleys of typical daily streamflows of small upland catchments?

  37. What is a flow-duration curve? For what is it used?

  38. What is a flow-mass curve? For what is it used?

  39. What is the Hurst phenomenon?

  40. How does peak discharge per unit area vary with catchment size? Why?


[References]      [Top]   [Precipitation]   [Hydrologic Abstractions]   [Catchment Properties]   [Runoff]   [Questions]  

  1. A 465-km2 catchment has mean annual precipitation of 775 mm and mean annual flow of 3.8 m3/s. What percentage of total precipitation is abstracted by the catchment?

  2. A 9250-km2 catchment has mean annual precipitation of 645 mm and mean annual flow of 37.3 m3/s. What is the precipitation depth abstracted by the catchment?

  3. Using the dimensionless temporal rainfall distribution shown in Fig. 2-5, calculate a hyetograph for an 18-cm, 12-h storm, defined at l-h intervals.

  4. A 100-km2 catchment is instrumented with 13 rain gages located as shown in Fig. P-2-4. Immediately after a certain precipitation event, the rainfall amounts accumulated in each gage are as shown in the figure. Calculate the average precipitation over the catchment by the following methods: (a) average rainfall, (b) Thiessen polygons, and (c) isohyetal method.

    Spatial distribution of rain gages for Problem 2-4

    Fig. P-2-4  Spatial distribution of rain gages for Problem 2-4.

  5. A certain catchment experienced a rainfall event with the following incremental depths:

    Time (h) 0-3 3-6 6-9 9-12
    Rainfall (cm) 0.4 0.8 1.6 0.2

    Determine: (a) the average rainfall intensity in the first 6 h, (b) the average rainfall intensity for the entire duration of the storm.

  6. The following dimensionless temporal rainfall distribution has been determined for a local storm:

    Time (%) 0 10 20 30405060708090100
    Rainfall depth (%) 0 5 10 25507590959799100

    Calculate a design hyetograph for a 12-cm, 6-h storm. Express in terms of hourly rainfall depths.

  7. Given the following intensity-duration data, find the a and m constants of Eq. 2-5.

    Intensity (mm/h) 50 30
    Duration (h) 0.5 1.0

  8. Given the following intensity-duration data, find the constants a and b of Eq. 2-6.

    Intensity (mm/h) 60 40
    Duration (h) 1 2

  9. Construct a depth-area curve for the 6-h duration isohyetal map shown in Fig. P-2-9.

    Isohyetal map for Problem 2-9

    Fig. P-2-9  Isohyetal map for Problem 2-9.

  10. The precipitation gage for station X was inoperative during part of the month of January. During that same period, the precipitation depths measured at three index stations A, B, and C were 25, 28, and 27 mm, respectively. Estimate the missing precipitation data at X. given the following average annual precipitation at X, A, B, and C: 285, 250, 225, and 275 mm, respectively.

  11. The precipitation gage for station Y was inoperative during a few days in February. During that same period, the precipitation at four index stations, each located in one of four quadrants (Fig. 2-15), is the following:

    Quadrant) Precipitation
    I 25 8.5
    II 28 6.2
    III 27 3.7
    IV 30 15.0

    Estimate the missing precipitation data at station Y.

  12. The annual precipitation at station Z and the average annual precipitation at 10 neighboring stations are as follows:

    YearPrecipitation at Z
    10-station average
    197235 28
    197337 29
    197439 31
    197535 27
    197630 25
    197825 21
    197920 17
    198024 21

    YearPrecipitation at Z
    10-station average
    198130 26
    198231 31
    198335 36
    198438 39
    198540 44
    198428 32
    198525 30
    198521 23

    Use double-mass analysis to correct for any data inconsistencies at station Z.

  13. Calculate the interception loss for a storm lasting 30 min, with interception storage 0.3 mm, ratio of evaporating foliage surface to its horizontal projection K = 1.3, and evaporation rate E = 0.4 mm/h.

  14. Show that F = (fo - fc)/k, in which F is the total infiltration depth above the f = fc line, Eq. 2-13.

  15. Fit a Horton infiltration formula to the following measurements:

    1 2.35
    3 1.27

  16. Given the following measurements, determine the parameters of the Philip infiltration equation.

    2 1.7
    4 1.5

  17. The following rainfall distribution was measured during a 12-h storm:

    Time (h) 0-2 2-4 4-6 6-88-1010-12
    Rainfall intensity (cm/h) 1.0 2.0 4.0

    Runoff depth was 16 cm. Calculate the φ-index for this storm.

  18. Using the data of Problem 2-17, calculate the W-index, assuming the sum of interception loss and depth of surface storage is S = 1 cm.

  19. A certain catchment has a depression storage capacity of Sd = 2 mm. Calculate the equivalent depth of depression storage for the following values of precipitation excess: (a) 1 mm, (b) 5 mm, and (c) 20 mm.

  20. Use the Meyer equation to calculate monthly evaporation for a large lake, given the following data: month of July, mean monthly air temperature 70°F, mean monthly relative humidity 60%, monthly mean wind speed at 25-ft height, 20 mi/h.

  21. Derive the Penman equation (Eq. 2-36).

  22. Use the Penman method to calculate the evaporation rate for the following atmospheric conditions: air temperature, 25°C; net radiation, 578 cal/cm2/d, wind speed at 2-m above the surface, v2 = 150 km/d; relative humidity, 50%.

  23. Use the Penman method (together with the Meyer equation) to calculate the evaporation rate (in inches per day) for the following atmospheric conditions: air temperature, 70°F, water surface temperature, 50°F, daily mean wind speed at 25-ft height, W = 15 mi/h, relative humidity 30%, net radiation, Qn = 15 Btu/ in.2/ d. Assume a large lake to use Eq. 2-27 (b).

  24. Use the Blaney-Criddle method (with corrections due to Doorenbos and Pruitt) to calculate reference crop evapotranspiration during the month of July for a geographic location at 40°N, with mean daily temperature of 25°C. Assume high actual insolation time, 70% minimum relative humidity, and 1 m/s daytime wind speed.

  25. Use the Thornthwaite method to calculate the potential evapotranspiration during the month of May for a geographic location at 35°N, with the following mean monthly temperatures, in degrees Celsius.

    Jan FebMar Apr May JunJulAugSepOctNov Dec
    6 810 12 152025 20 16 12108

  26. Use the Priestley and Taylor formula to calculate the potential evapotranspiration for a site with air temperature of 15°C and net radiation of 560 cal/cm2/d.

  27. The following data have been obtained by planimetering a 135-km2 catchment:

    Subarea above
    indicated elevation
    1010 135
    1020 85
    1030 65
    1040 30
    1050 12
    1060 4
    1070 0

    Calculate a hypsometric curve for this catchment.

  28. Derive the formula for the compactness ratio Kc (Eq. 2-51).

  29. Given the following longitudinal profile of a river channel, calculate the following slopes: (a) S1, (b) S2, and (c) S3.

    Distance (km) 0 50 100 150 200250300
    Elevation (m) 10 30 60 100 150220350

  30. The bottom of a certain 100-km reach of a river can be described by the following longitudinal profile:

    y = 100 e -0.00001 x

    in which y = elevation with reference to an arbitrary datum, in meters; and x = horizontal distance measured from upstream end of the reach, in meters. Calculate the S2 slope.

  31. Given the following 14-d record of daily precipitation, calculate the antecedent precipitation index API. Assume the starting value of the index to be equal to 0 and the recession constant K = 0.85.



  32. A 35-ha catchment experiences 5 cm of precipitation, uniformly distributed in 2 h. If the time of concentration is 1 h, what is the maximum possible flow rate at the catchment outlet?

  33. Calculate hourly ordinates of a gamma hydrograph with the following characteristics: peak flow, 1000 m3/s; baseflow, 0 m3/s; time-to-peak, 3 h; and time-to-centroid, 6 h.

  34. The following data have been measured in a river: mean velocity V = 1.8 m/s, hydraulic radius R = 3.2 m, channel slope S = 0.0005. Calculate the Manning and Chezy coefficients.

  35. The Chezy coefficient for a wide channel is C = 49 m1/2/s and the bottom slope is S = 0.00037. What is the Froude number of the uniform (i.e., steady equilibrium) flow?

  36. The flow duration characteristics of a certain stream can be expressed as follows:

    Q = ( 950 /T )  +  10

    in which Q = discharge in cubic meters per second, and T = percent time, restricted to the range 1-100%. What flow can be expected to be exceeded: (a) 90% of the time, (b) 95% of the time, and (c) 100% of the time?

  37. A reservoir has the following average monthly inflows, in cubic hectometers (million of cubic meters):

  38. Jan FebMar Apr May JunJulAugSepOctNov Dec
    3034 35 487285 72 55 51403432

    Determine the reservoir storage volume required to release a constant draft rate throughout the year.

  39. The analysis of 43 y of runoff data at a reservoir site in a large river has led to the following: mean annual runoff volume, 24 km3; standard deviation, 7 km3. What is the reservoir storage volume required to guarantee a constant release rate equal to the mean of the data?

  40. Calculate the peak discharge for a l000-mi2 drainage area using the Creager formula (Eq. 2-73) with (a) C = 30, and (b) C = 100.


   [Top]   [Precipitation]   [Hydrologic Abstractions]   [Catchment Properties]   [Runoff]   [Questions]   [Problems]  

  1. American Society of Civil Engineers. (1949). "Hydrology Handbook," Manual of Engineering Practice No. 28.

  2. American Society of Civil Engineers. (1960). "Design and Construction of Sanitary Storm Sewers," Manual of Engineering Practice No. 37.

  3. American Society of Civil Engineers. (1990). "Evapotranspiration and Irrigation Water Requirements," Manual of Engineering Practice No. 70.

  4. Barnes, H. H., Jr. (1967). "Roughness Characteristics of Natural Channels," U.S. Geological Survey Water Supply Paper No. 1849.

  5. Blaney, H. F., and W. D. Criddle. (1950). "Determining Water Requirements in Irrigated Areas from Climatological and Irrigation Data," USDA Irrigation and Water Conservation, SCS TP-96. August.

  6. Blaney, H. F., and W. D. Criddle. (1962). "Determining Consumptive Use of Irrigation Water Requirements," USDA Technical Bulletin No. 1275, Washington, D.C.

  7. Bowen, I. S. (1926). "The Ratio of Heat Losses by Conduction and by Evaporation from any Water Surface," Physics Review, Vol. 27, pp. 779-787.

  8. Bras, R., and I. Rodriguez-Iturbe. (1985). Random Functions and Hydrology. Reading, Mass.: Addison-Wesley.

  9. Bruce, J. P., and G. K. Rodgers. (1962). "Water Balance in the Great Lakes System, Great Lakes Basin," American Association for the Advancement of Science, Publication No. 71, Washington, D.C.

  10. Bruce, J. P. , and R. H. Clark. (1966). Introduction to Hydrometeorology. Elmsford, NY: Pergamon Press.

  11. Bull, W. B. (1991). Geomorphic Response to Climatic Change. Oxford University Press, New York.

  12. Chow, V. T. (1964). Handbook of Applied Hydrology. New York: McGraw-Hili.

  13. Cook, H. L. (1946). "The Infiltration Approach to the Calculation of Surface Runoff," Transactions, American Geophysical Union, Vol. 27, No. V, October, pp. 726-747.

  14. Creager, W. P., J. D. Justin, and J. Hinds. (1945). Engineering for Dams. Vol. 1, General Design. New York: John Wiley.

  15. Dalton, J. (1802). "Experimental Essays on the Constitution of Mixed Gases; on the Force of Steam or Vapor from Water and Other Liquids, Both in a Torricellian Vacuum and in Air; on Evaporation; and on the Expansion of Gases by Heat," Manchester Literary and Philosophical Society Proceedings, Vol. 5, pp. 536-602.

  16. Doorenbos J., and W. O. Pruitt. (1977). "Guidelines for Predicting Crop Water Requirements," Irrigation and Drainage Paper No. 24, FAO, Rome.

  17. Dunne, T., and L. B. Leopold. (1978). Water in Environmental Planning. San Francisco: Freeman and Co.

  18. Environmental Data Service, Environmental Science Services Administration, U.S. Department of Commerce, "Climatic Atlas of the United States," 1968.

  19. Fread, D. L. (1985). "Channel Routing," in Hydrological Forecasting, M. G. Anderson and T. P. Burt, eds. New York: John Wiley.

  20. Frevert, D. K., R. W. Hill, and B. C. Braten. (1983). "Estimation of FAO Evapotranspiration Coefficients," J. Irrigation Drainage Engrg., ASCE, Vol. 109, No. IR2, pp. 265-270.

  21. Green, W. H. and G. A. Ampt. (1911). "Studies on Soil Physics. 1. The Flow of Air and Water Through Soils," Journal of Agricultural Soils, Vol. 4, pp. 1-24.

  22. Hathaway, G. A. (1945). "Design of Drainage Facilities," Transactions, ASCE, Vol. 110, pp. 697-730.

  23. Hicks, W. I. (1944). "A Method of Computing Urban Runoff," Transactions, ASCE, Vol. 109, pp. 1217-1233.

  24. Hillel, D. (1971). Soil and Water, Physical Principles and Processes. New York: Academic Press.

  25. Horton, R. E. (1919). "Rainfall Interception," Monthly Weather Review, Vol. 47, September, pp. 603-623.

  26. Horton, R. E. (1932). "Drainage Basin Characteristics," Transactions, American Geophysical Union, Vol. 13, pp. 350-361.

  27. Horton, R. E. (1933). "The Role of Infiltration in the Hydrologic Cycle," Transactions, American Geophysical Union, Vol. 14, pp. 446-460.

  28. Horton, R. E. (1941). "Sheet Erosion, Present and Past," Transactions, American Geophysical Union, Vol. 22, pp. 299-305.

  29. Houghton, H. G. (1959). "Cloud Physics," Science, Vol. 129, No. 3345, February pp 307-313.

  30. Howe, R. H. L. (1960). "The Application of Aerial Photographic Interpretation to the Investigation of Hydrologic Problems," Photogrametric Engineering, Vol. 26, pp. 85-95.

  31. Hurst, H. E. (1951). "Long-term Storage Capacity of Reservoirs," Transactions, ASCE, Vol. 116, pp. 770-799.

  32. Hurst, H. E. (1956). "Methods of Using Long-term Storage in Reservoirs," Proceedings, Institution of Civil Engineers, London, England, Vol. 5, pt. 1, No. S, September, pp.

  33. Hydrometeorological Report No. 39. (1963). "Probable Maximum Precipitation in the Hawaiian Islands." NOAA National Weather Service, Silver Spring, Maryland.

  34. Hydrometeorological Report No. 42. (1966). "Meteorological Conditions for the Probable Maximum Flood on the Yukon River Above Rampart, Alaska, " NOAA National Weather Service, Silver Spring, Maryland.

  35. Hydrometeorological Report No. 49. (1977). "Probable Maximum Precipitation Estimates, Colorado River and Great Basin Drainages," NOAA National Weather Service, Silver Spring, Maryland.

  36. Hydrometeorological Report No. 50. (1981). ''Meteorology of Important Rainstorms in the Colorado River and Great Basin Drainages," NOAA National Weather Service, Silver Spring, Maryland.

  37. Hydrometeorological Report No. 51. (1978). "Probable Maximum Precipitation Estimates, United States East of the 105th Meridian," NOAA National Weather Service, Silver Spring, Maryland.

  38. Hydrometeorological Report No. 52. (1982). "Application of Probable Maximum Precipitation Estimates--United States East of the 105th Meridian," NOAA National Weather Service, Silver Spring, Maryland.

  39. Hydrometeorological Report No. 53. (1980). "Seasonal Variation of 10-Square Mile Probable Maximum Precipitation Estimates, United States East of the 105th Meridian," NOAA National Weather Service, Silver Spring, Maryland.

  40. Hydrometeorological Report No. 54. (1983). "Probable Maximum Precipitation and Snowmelt Criteria for Southeast Alaska," NOAA National Weather Service, Silver Spring, Maryland.

  41. Hydrometeorological Report No. 55A. (1988). "Probable Maximum Precipitation Estimates United States Between the Continental Divide and the 103rd Meridian," NOAA National Weather Service, Silver Spring, Maryland.

  42. Hydrometeorological Report No. 56. (1986). "Probable Maximum and TVA Precipitation Estimates With Areal Distribution for Tennessee River Drainages Less Than 3,000 Mi2 in Area," NOAA National Weather Service, Silver Spring, Maryland.

  43. Hydrometeorological Report No. 57. (1994). "Probable Maximum Precipitation- acific Northwest States: Columbia River (including portions of Canada), Snake River, and Pacific Coastal Drainages," NOAA National Weather Service, Silver Spring, Maryland.

  44. Hydrometeoroiogicai Report No. 58. (1997). "Probable Maximum Precipitation in California," NOAA National Weather Service, Silver Spring, Maryland.

  45. Kennedy, E. 1. (1984). "Discharge Ratings at Gaging Stations," U.S. Geological Survey, Techniques oj Water Resources Investigations, Book 3, Chapter A10.

  46. Kirpich, Z. P. (1940). "Time of Concentration of Small Agricultural Watersheds," Civil Engineering, Vol. 10, June, p. 362.

  47. Klemes, V. (1974). "The Hurst Phenomenon: A Puzzle?" Water Resources Research, Vol 10, No.4, pp. 675-688.

  48. Knapp, B. J. (1978). "Infiltration and Storage of Soil Water," in Hillslope Hydrology, M. J. Kirkby, ed. New York: John Wiley.

  49. Kohler, M. A., T. J. Nordenson, and W. E. Fox. (1955). "Evaporation from Pans and Lakes," Weather Bureau, U.S. Department of Commerce, Research Paper No. 38.

  50. Kohler, M. A., and M. M. Richards. (1962). "Multicapacity Basin Accounting for PredictIng Runoff from Storm Precipitation," Journal of Geophysical Research, Vol. 67, pp. 5187-5197.

  51. Lamoreaux, W. W. (1962). "Modern Evaporation Formula Adapted to Computer Use," Monthly Weather Review, Vol. 90, No. 1, pp. 26-28.

  52. Langbein, W. B., et al. (1947). "Topographic Characteristics of Drainage Basins," U.S. Geological Survey Water Supply Paper No. 968-C.

  53. Linsley, R. K. , M. A. Kohler, and 1. L. H. Paulhus. (1982). Hydrology for Engineers. 3d. Ed. New York: McGraw-Hill.

  54. Meyer, A. F. (1915). "Computing Runoff from Rainfall and Other Physical Data," Transactions, ASCE, Vol. 79, pp. 1056-1224.

  55. Meyer, A. F. (1944). "Evaporation from Lakes and Reservoirs," Minnesota Resources Commission, St. Paul, Minnesota, June.

  56. Monteith, J. L. (1959). "The Reflection of Short Wave Radiation by Vegetation," Quarterly Journal oj the Royal Meteorological Society, Vol. 85, pp. 586-592.

  57. Monteith, J. L. (1965). "Evaporation and the Environment," Symp. Soc. Expl. Biol., Vol. 19, pp. 205-234 .

  58. NOAA National Weather Service. (1972). "National Weather Service River Forecast System. Forecast Procedures," Technical Memorandum NWS-HYDRO 14, Dec. , pp. 3.1-3.14.

  59. NOAA National Weather Service. (1973). "Atlas 2: Precipitation Atlas of the Western United States."

  60. NOAA National Weather Service. (1977). "Five- to 60-Minute Precipitation Frequency for the Eastern and Central United States," Technical Memorandum NWS HYDRO-35.

  61. Osmolski, Z. (1985). "Estimating Potential Evapotranspiration from Climatological Data in an Arid Environment," Ph.D. Diss., School of Renewable and Natural Resources, University of Arizona, Tucson.

  62. Overton, D. E. , and M. E. Meadows. (1976). Stormwater Modeling. New York: Academic Press.

  63. Papadakis, C. N., and M. N. Kazan. (1987). "Time of Concentration in Small Rural Watersheds," Proceedings of the Engineering Hydrology Symposium, ASCE, Williamsburg, Virginia, August 3-7, pp. 633-638.

  64. Paulhus, J. L. H., and M. A. Kohler. (1952). "Interpolation of Missing Precipitation Records," Monthly Weather Review, Vol. 80, No. 8, August, pp. 129-133.

  65. Penman, H. L. (1948). "Natural Evaporation from Open Water, Bare Soil and Grass," Proceedings of the Royal Society, London, Vol. 193, pp. 120-145.

  66. Penman, H. L. (1952). "The Physical Basis of Irrigation Control," Proceedings, 13th International Horticulture Congress, London.

  67. Philip, I. R. (1957), (1958). "The Theory of Infiltration," Soil Science, Vol. 83, 1957, pp. 345-357; and 1958, pp. 435-458.

  68. Priestley, C. H. B., and R. J. Taylor. (1972). "On the Assessment of Surface Heat Flux and Evaporation Using Large Scale Parameters," Monthly Weather Review, Vol. 100, pp. 81-92 .

  69. Ragunath, H. M. (1985). Hydrology. New Delhi: Halsted Press.

  70. Rippl, W. (1883). "The Capacity of Storage Reservoirs for Water Supply," Proceedings, Institution oj Civil Engineers, London, England, Vol. 71, pp. 270-278.

  71. Salas, J. D., J. W. Delleur, V. Yevjevich, and W. L. Lane. (1980). Applied Modeling of Hydrologic Time Series. Littleton, Colo.: Water Resources Publications.

  72. Sartor, D. (1954). "A Laboratory Investigation of Collision Efficiencies, Coalescence and Electrical Charging of Simulated Cloud Particles," Journal of Meteorology, Vol. 11, No. 2, April, pp. 91-103.

  73. Schroeder, M. J., and C. C. Buck. (1970). "Fire Weather," Agriculture Handbook 360, Forest Service.

  74. Schumm, S. A. (1956). "Evolution of Drainage Systems and Slopes in Perth Amboy, New Jersey," Geological Society of America Bulletin, Vol. 67, pp. 597-646.

  75. Shuttleworth, W. J., and J. S. Wallace (1984). "Evaporatlon from Sparse Crops-An Energy Combination Theory," Quarterly Journal of the Royal Meteorological Society, Vol. 111, pp. 839-855.

  76. Shuttleworth, W. J. (1993). "Evaporation," Maidment, ed., McGraw-Hill, New York.

  77. Stanhill, G. (1975). "The Concept of Potential Evapotranspiration in Arid-Zone Agriculture," Proceedings, Montpelier Symposium in Arid Zone Research, UNESCO, Paris, Vol. 25, pp. 109-171.

  78. Tholin, A. L. , and C. J. Keifer. (1960). "The Hydrology of Urban Runoff," Transactions, ASCE, Vol. 125, pp. 1308-1379.

  79. Thornthwaite, C. W., H. G. Wilm, et al. (1944). "Report of The Committee on Transpiration and Evaporation, 1943-1944," Transactions, American Geophysical Union, Vol. 25, pt. V, pp. 683-693 .

  80. USDA Soil Conservation Service. (1985). National Engineering Handbook. No. 4: Hydrology, Washington, D.C.

  81. U.S. Geological Survey. (1952). "Water Loss Investigations: Vol. I-Lake Hefner Studies, Circular No. 229.

  82. U.S. Geological Survey. (1954). "The Water Budget Control," in Water Loss Investigations, Lake Hefner Studies, ProfessiOnal Paper No. 269.

  83. Viessman, W., J. W. Knapp, G. L. Lewis, and T. E. Harbaugh. (1977). Introduction to Hydrology. 2d. ed. New York: Harper & Row.

  84. Weather Bureau, U.S. Department of Commerce. (1955). "Rainfall Intensity-Duratlon-Frequency Curves," Technical Paper No. 25.

  85. Weather Bureau, U.S. Department of Commerce. (1962). "Generalized Estimates of Probable Maximum Precipitation and Rainfall Frequency Data for Puerto Rico and Virgin Islands for Areas to 400 Square Miles, Durations to 24 Hours, and Return Periods from 1 to 100 Years," Technical Paper No. 42.

  86. Weather Bureau, U.S. Department of Commerce. (1962). "Rainfall Frequency Atlas of Hawaiian Islands for Areas to 200 Square Miles, Durations to 24 Hours, and Return Periods from 1 to 100 Years," Technical Paper No. 43.

  87. Weather Bureau, U.S. Department of Commerce. (1963). "Rainfall Frequency Atlas of the United States for Durations from 30 Minutes to 24 Hours and Return Periods from 1 to 100 Years," Technical Paper No. 40.

  88. Weather Bureau, U.S. Department of Commerce. (1963). "Probable Maximum Precipitation and Rainfall Frequency Data for Alaska for Areas to 400 Square Miles, Durations to 24 Hours, and Return Periods from 1 to 100 Years," Technical Paper No. 47.

  89. Weather Bureau, U.S. Department of Commerce. (1964). "Two-to-Ten Day Precipitation for Return Periods of 2 to 100 Years in the Contiguous United States," Technical Paper No. 49.

  90. Yevjevich, V. (1972). Stochastic Processes in Hydrology, Fort Collins, Colo.: Water Resources Publications.

http://engineeringhydrology.sdsu.edu 140308 18:00

Documents in Portable Document Format (PDF) require Adobe Acrobat Reader 5.0 or higher to view; download Adobe Acrobat Reader.